410 likes | 521 Views
The impact of accelerated sea level rise on coastal wetlands and its implications on storm surge - The story of lower Pascagoula River Basin in Jackson County, MS. Wei Wu 1 , Maria Kalcic 2 , Jason Fleming 3 March 6, 2012 The University of Southern Mississippi Computer Science Corp
E N D
The impact of accelerated sea level rise on coastal wetlands and its implications on storm surge- The story of lower Pascagoula River Basin in Jackson County, MS Wei Wu1, Maria Kalcic2, Jason Fleming3 March 6, 2012 The University of Southern Mississippi Computer Science Corp Seahorse Coastal Consulting
GHGs are changing, but growing at a unprecedented accelerated rate Atmospheric concentrations of CO2, CH4 and N2O over the last 10,000 years (large panels) and since 1750 (inset panels). Measurements are shown from ice cores and atmospheric samples (red lines). The corresponding radiative forcing relative to 1750 are shown on the right hand axes of the large panels. From IPCC Climate Change 2007: Synthesis report
Surface temperature, seal level and snow cover are changing, but at a unprecedented accelerated rate • Observed changes in • Global average surface temperature; • Global average sea level from tide gauge (blue) and satellite (red); • Northern hemisphere snow cover for March-April. • Smoothed curves represent decadal averaged values while circles show yearly values. The shaded areas are the uncertainty intervals. • From IPCC Climate Change 2007: Synthesis report
Consequences of climate change • Alter ecosystem services and affect the ability of biological systems to support human needs (Vitousek et al. 1997) • e.g. degradation in water quality, productivity and extractable resources; • Interact with other environmental stressors: elevated acidic atmospheric deposition, accelerated sea level rise, hurricanes etc.
Coastal wetland • Coastal wetlands are ecologically, economically and socially important to humans as they provide the benefits of storm protection, flood control, habitat for commercially important fisheries and wildlife, improved water quality through sediment, nutrient and pollutant removal, recreation, and aesthetic value. • In particular, coastal wetlands can reduce storm surge potential by acting as a physical barrier and creating frictional resistance for the surge and waves. They may also reduce surge potential and flooding risks by reducing surface winds due to higher sub-aerial surface roughness and by slowing surge propagation due to bottom friction in shallow flow at the inundation front.
Objectives • Simulate the impact of different sea level rise scenarios on coastal wetland; • How the area and location changes of coastal wetland affect storm surge predictions
Method • Sea Level Affecting Marshes Model (SLAMM 6.0.1 beta) Simulates the dominant processes involved in wetland conversions and shoreline modifications during long-term sea-level rise : Inundation, Erosion, Overwash, Saturation, Accretion, Salinity • SLAMM integrates elevation–submergence and wave action–erosion. SLAMM also incorporates a salinity algorithm, based on freshwater discharge and cross-sectional area of the estuary, to model saltwater intrusion in river-dominated estuaries of our study domain. • Model inputs included the USGS LiDAR-derived elevation data (vertical accuracy: 12 cm) NOAA tidal data Accretion rates National Wetlands Inventory (NWI) data
Study area – lower Pascagoula River Estuarine9th American most endangered rivers Latitude 30º28’N Longitude 88º35’W
Accretion rates From fallout radionuclides (7Be, 137Cs, and 210Pb)
Sea level rise scenario Sea level rise rate is predicted to be 0.10 inch/year to 0.83 inch/year, on Mississippi Gulf Coast, which will be translated to 0.26 m to 2.19 m increase in sea level from 1996 to 2100.
From 1996 to 2100 High low
Simulate the impact of changes in coastal wetland on storm surge
Method • Advanced CIRCulation(ADCIRC model). Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model: domain is limited and the spatial resolution is very coarse (0.5-7 Km) (International Hurricane Research Center, online). It is difficult to simulate convoluted shorelines and incorporate features that block or accelerate storm surge flooding. In addition, tide and wave set ups are not included, and the overland flooding model is not adequate, thus SLOSH tends to produce large uncertainty and provides only a very rough estimate in the predicted flooded area only. ADCIRC’s domain is flexible, its spatial resolution can reach finer than 50×50 m, it can simulate convoluted shorelines and include features like highways and canals, and it contains tide setup, so it performs better (albeit more slowly) than SLOSH, especially at the shoreline.
Conclusion • SLR is likely to affect area and distribution of coastal wetlands and therefore alter landscape patterns. • Wetland change due to SLR is likely to change storm surge height (e.g. 1.8 -8.5% increase under different scenarios of SLR) and affect the pattern of coastal floods (increase the flooded area).
Acknowledgements Mississippi-Alabama Sea Grant Consortium Program Development Mississippi-Alabama Sea Grant Consortium Coastal Storm Program