E N D
1. Metallorganische Chemie 1 Zink Organyle Frankland 2 RI + 2 Zn -> R2Zn + ZnI2
Reformatsky Reagenz
Simmons-Smith Reaktion
1984 Oguni asymmetrische Addition
2. Metallorganische Chemie 2 Reformatzky Reaktion
3. Metallorganische Chemie 3 Reformatsky Reagenz
4. Metallorganische Chemie 4 Reformatsky Reagenz
5. Metallorganische Chemie 5 Homo-Reformatsky Reagenz
6. Metallorganische Chemie 6 Homo-Reformatsky Reagenz
7. Metallorganische Chemie 7 Simmons-Smith
8. Metallorganische Chemie 8 Alkenaffinität von Zn-Organylen Paul Knochel Tet. Lett 1986, 27, 1039Paul Knochel Tet. Lett 1986, 27, 1039
9. Metallorganische Chemie 9 Simmons-Smith Reagenz
10. Metallorganische Chemie 10 Furukawa Reaktionen
11. Metallorganische Chemie 11 Simmons-Smith Reaktionen
12. Metallorganische Chemie 12 Stereoselektive Cyclopropanierung Substrate controlled: I. Arai, H. Yamamoto JACS 1985, 107, 8254, Tetrahedron 1986, 42, 6447
Reagent controlled: A.B. Charette JOC 1995, 60, 1081Substrate controlled: I. Arai, H. Yamamoto JACS 1985, 107, 8254, Tetrahedron 1986, 42, 6447
Reagent controlled: A.B. Charette JOC 1995, 60, 1081
13. Metallorganische Chemie 13 Oguni asymmetrische Addition
14. Metallorganische Chemie 14 Knochels asymmetrische Addition
15. Metallorganische Chemie 15 Asymmetrische Autokatalyse Soai K. et al Nature 1995, 378, 767Soai K. et al Nature 1995, 378, 767
16. Metallorganische Chemie 16 Asymmetrische Autokatalyse Soai K. et al Nature 1995, 378, 767Soai K. et al Nature 1995, 378, 767
17. Metallorganische Chemie 17 Enantioselektive Addition Soai K. et al Nature 1995, 378, 767Soai K. et al Nature 1995, 378, 767
18. Metallorganische Chemie 18 Transmetallierung Zn-Organyle
19. Metallorganische Chemie 19 Wo geht es weiter? Basisch Lewis Säure
Li Be
Na Mg B
K Ca Ti Al Si
Ni Cu Zn In
Cs Ba Pd Sn
20. Metallorganische Chemie 20 Indium
21. Metallorganische Chemie 21 Indium Vorteile
22. Metallorganische Chemie 22 Indium Vorteile
23. Metallorganische Chemie 23 Barbier Allylierung
24. Metallorganische Chemie 24 Allylierung von Ketonen Lösemittelfrei
In polar protischen Lösungsmitteln
25. Metallorganische Chemie 25 a- versus g-Angriff
26. Metallorganische Chemie 26 Stereoselektive Allylierung
27. Metallorganische Chemie 27 Diastereoselektivität
28. Metallorganische Chemie 28 Stereoselektivität The Cram chelate model predicts the stereochemical course of organometallic additions to á-alkoxy carbonyl compounds based on a complexation of the metal by the chelating oxygen. Would this ligation persist in the presence of competing water? Paquette et al. investigated this problem thorougly and found that in fact water was the solvent, which led to the best results. Scheme 9 shows the allyl addition to 3-hydroxybutanal which gave the anti-product in a 8.5:1 ratio when water was used as a solvent while no reaction occurred in water-free THF. Similar results were obtained with protected hydroxy groups although selectivities were significantly lower in these cases, especially with bulky protecting groups. The high anti-selectivity could be explained by a Zimmerman–Traxler-like transition state, with additional complexation of indium by the oxygen of the hydroxy function. In this case the allyl moiety attacks from the less hindered side, opposite to the methyl group (Scheme 9).The Cram chelate model predicts the stereochemical course of organometallic additions to á-alkoxy carbonyl compounds based on a complexation of the metal by the chelating oxygen. Would this ligation persist in the presence of competing water? Paquette et al. investigated this problem thorougly and found that in fact water was the solvent, which led to the best results. Scheme 9 shows the allyl addition to 3-hydroxybutanal which gave the anti-product in a 8.5:1 ratio when water was used as a solvent while no reaction occurred in water-free THF. Similar results were obtained with protected hydroxy groups although selectivities were significantly lower in these cases, especially with bulky protecting groups. The high anti-selectivity could be explained by a Zimmerman–Traxler-like transition state, with additional complexation of indium by the oxygen of the hydroxy function. In this case the allyl moiety attacks from the less hindered side, opposite to the methyl group (Scheme 9).
29. Metallorganische Chemie 29 Stereoselektivität Similar transition states explain the preferential formation of the syn-product in the allyl addition to a-hydroxy aldehydes. Nevertheless, for more sterically demanding substrates and especially with substituted allyl compounds, the minor anti-product is possibly formed via an open-chain transition state rather than via chelate control. The probable chelation should similarly account for a-thio and a-amino aldehydes.Similar transition states explain the preferential formation of the syn-product in the allyl addition to a-hydroxy aldehydes. Nevertheless, for more sterically demanding substrates and especially with substituted allyl compounds, the minor anti-product is possibly formed via an open-chain transition state rather than via chelate control. The probable chelation should similarly account for a-thio and a-amino aldehydes.
30. Metallorganische Chemie 30 Stereoselektivität
31. Metallorganische Chemie 31 Indium: katalytisch
32. Metallorganische Chemie 32 Indium: katalytisch
33. Metallorganische Chemie 33 Barbier: enantioselektiv
34. Metallorganische Chemie 34 Indium: Nitro-Reduktion
35. Metallorganische Chemie 35 Zinn TBTH Tributylzinnhydrid
R3Sn-X
36. Metallorganische Chemie 36 Toxizität LD50 mg/kg Ratte
R R3SnCl R2SnCl2 RSnCl3
Me <20 <230 <1350
Bu <350 <220 <2200
Ph <135 / /
37. Metallorganische Chemie 37 Lipophil Bu3SnCl ist löslich in Hexan und unlöslich in MeCN
Bu3SnBr/I TLC rf Hexan ca 0.9
38. Metallorganische Chemie 38 R3Sn Anion
39. Metallorganische Chemie 39 R3Sn Anion
40. Metallorganische Chemie 40 Reaktivität Oxidation
Fragmentierung
41. Metallorganische Chemie 41 „Grob“-Fragmentierung
42. Metallorganische Chemie 42 Maskierte Acylanionen
43. Metallorganische Chemie 43 Maskierte Acylanionen