1 / 43

Zink Organyle

lyle
Download Presentation

Zink Organyle

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. Metallorganische Chemie 1 Zink Organyle Frankland 2 RI + 2 Zn -> R2Zn + ZnI2 Reformatsky Reagenz Simmons-Smith Reaktion 1984 Oguni asymmetrische Addition

    2. Metallorganische Chemie 2 Reformatzky Reaktion

    3. Metallorganische Chemie 3 Reformatsky Reagenz

    4. Metallorganische Chemie 4 Reformatsky Reagenz

    5. Metallorganische Chemie 5 Homo-Reformatsky Reagenz

    6. Metallorganische Chemie 6 Homo-Reformatsky Reagenz

    7. Metallorganische Chemie 7 Simmons-Smith

    8. Metallorganische Chemie 8 Alkenaffinität von Zn-Organylen Paul Knochel Tet. Lett 1986, 27, 1039Paul Knochel Tet. Lett 1986, 27, 1039

    9. Metallorganische Chemie 9 Simmons-Smith Reagenz

    10. Metallorganische Chemie 10 Furukawa Reaktionen

    11. Metallorganische Chemie 11 Simmons-Smith Reaktionen

    12. Metallorganische Chemie 12 Stereoselektive Cyclopropanierung Substrate controlled: I. Arai, H. Yamamoto JACS 1985, 107, 8254, Tetrahedron 1986, 42, 6447 Reagent controlled: A.B. Charette JOC 1995, 60, 1081Substrate controlled: I. Arai, H. Yamamoto JACS 1985, 107, 8254, Tetrahedron 1986, 42, 6447 Reagent controlled: A.B. Charette JOC 1995, 60, 1081

    13. Metallorganische Chemie 13 Oguni asymmetrische Addition

    14. Metallorganische Chemie 14 Knochels asymmetrische Addition

    15. Metallorganische Chemie 15 Asymmetrische Autokatalyse Soai K. et al Nature 1995, 378, 767Soai K. et al Nature 1995, 378, 767

    16. Metallorganische Chemie 16 Asymmetrische Autokatalyse Soai K. et al Nature 1995, 378, 767Soai K. et al Nature 1995, 378, 767

    17. Metallorganische Chemie 17 Enantioselektive Addition Soai K. et al Nature 1995, 378, 767Soai K. et al Nature 1995, 378, 767

    18. Metallorganische Chemie 18 Transmetallierung Zn-Organyle

    19. Metallorganische Chemie 19 Wo geht es weiter? Basisch Lewis Säure Li Be Na Mg B K Ca Ti Al Si Ni Cu Zn In Cs Ba Pd Sn

    20. Metallorganische Chemie 20 Indium

    21. Metallorganische Chemie 21 Indium Vorteile

    22. Metallorganische Chemie 22 Indium Vorteile

    23. Metallorganische Chemie 23 Barbier Allylierung

    24. Metallorganische Chemie 24 Allylierung von Ketonen Lösemittelfrei In polar protischen Lösungsmitteln

    25. Metallorganische Chemie 25 a- versus g-Angriff

    26. Metallorganische Chemie 26 Stereoselektive Allylierung

    27. Metallorganische Chemie 27 Diastereoselektivität

    28. Metallorganische Chemie 28 Stereoselektivität The Cram chelate model predicts the stereochemical course of organometallic additions to á-alkoxy carbonyl compounds based on a complexation of the metal by the chelating oxygen. Would this ligation persist in the presence of competing water? Paquette et al. investigated this problem thorougly and found that in fact water was the solvent, which led to the best results. Scheme 9 shows the allyl addition to 3-hydroxybutanal which gave the anti-product in a 8.5:1 ratio when water was used as a solvent while no reaction occurred in water-free THF. Similar results were obtained with protected hydroxy groups although selectivities were significantly lower in these cases, especially with bulky protecting groups. The high anti-selectivity could be explained by a Zimmerman–Traxler-like transition state, with additional complexation of indium by the oxygen of the hydroxy function. In this case the allyl moiety attacks from the less hindered side, opposite to the methyl group (Scheme 9).The Cram chelate model predicts the stereochemical course of organometallic additions to á-alkoxy carbonyl compounds based on a complexation of the metal by the chelating oxygen. Would this ligation persist in the presence of competing water? Paquette et al. investigated this problem thorougly and found that in fact water was the solvent, which led to the best results. Scheme 9 shows the allyl addition to 3-hydroxybutanal which gave the anti-product in a 8.5:1 ratio when water was used as a solvent while no reaction occurred in water-free THF. Similar results were obtained with protected hydroxy groups although selectivities were significantly lower in these cases, especially with bulky protecting groups. The high anti-selectivity could be explained by a Zimmerman–Traxler-like transition state, with additional complexation of indium by the oxygen of the hydroxy function. In this case the allyl moiety attacks from the less hindered side, opposite to the methyl group (Scheme 9).

    29. Metallorganische Chemie 29 Stereoselektivität Similar transition states explain the preferential formation of the syn-product in the allyl addition to a-hydroxy aldehydes. Nevertheless, for more sterically demanding substrates and especially with substituted allyl compounds, the minor anti-product is possibly formed via an open-chain transition state rather than via chelate control. The probable chelation should similarly account for a-thio and a-amino aldehydes.Similar transition states explain the preferential formation of the syn-product in the allyl addition to a-hydroxy aldehydes. Nevertheless, for more sterically demanding substrates and especially with substituted allyl compounds, the minor anti-product is possibly formed via an open-chain transition state rather than via chelate control. The probable chelation should similarly account for a-thio and a-amino aldehydes.

    30. Metallorganische Chemie 30 Stereoselektivität

    31. Metallorganische Chemie 31 Indium: katalytisch

    32. Metallorganische Chemie 32 Indium: katalytisch

    33. Metallorganische Chemie 33 Barbier: enantioselektiv

    34. Metallorganische Chemie 34 Indium: Nitro-Reduktion

    35. Metallorganische Chemie 35 Zinn TBTH Tributylzinnhydrid R3Sn-X

    36. Metallorganische Chemie 36 Toxizität LD50 mg/kg Ratte R R3SnCl R2SnCl2 RSnCl3 Me <20 <230 <1350 Bu <350 <220 <2200 Ph <135 / /

    37. Metallorganische Chemie 37 Lipophil Bu3SnCl ist löslich in Hexan und unlöslich in MeCN Bu3SnBr/I TLC rf Hexan ca 0.9

    38. Metallorganische Chemie 38 R3Sn Anion

    39. Metallorganische Chemie 39 R3Sn Anion

    40. Metallorganische Chemie 40 Reaktivität Oxidation Fragmentierung

    41. Metallorganische Chemie 41 „Grob“-Fragmentierung

    42. Metallorganische Chemie 42 Maskierte Acylanionen

    43. Metallorganische Chemie 43 Maskierte Acylanionen

More Related