270 likes | 474 Views
Multi-Robot Systems with ROS Lesson 12. Teaching Assistant: Roi Yehoshua roiyeho@gmail.com. Agenda. TAO team decisions Synchronized Next protocols Synchronized Alloc protocols Patrolling and formation examples. TAO Team Decisions. Time synchronization Start plan synchronization
E N D
Multi-Robot Systems with ROS Lesson 12 Teaching Assistant: RoiYehoshua roiyeho@gmail.com
Agenda • TAO team decisions • Synchronized Next protocols • Synchronized Alloc protocols • Patrolling and formation examples (C)2014 Roi Yehoshua
TAO Team Decisions • Time synchronization • Start plan synchronization • Mutual termination of plan • Team synchronization / allocation • Splitting to sub-teams and child plan allocation • Team decision about next plan • Selection of next plan for all robots in team (C)2014 Roi Yehoshua
Patrolling Example • The following example defines a TAO machine for a team of robots that patrol along a wall – each robot covers a different segment of the wall • Each robot runs a TAO machine with 4 plans: • Start • TurnToGoal • MoveToGoal • Switch • There is a NEXT sequence relation between these plans (no allocations of sub-plans) • In the basic example PatrolAsync.cpp there is no synchronization or decision making at the team level (C)2014 Roi Yehoshua
PatrolAsync Move To Goal Switch Goal Start Turn To Goal (C)2014 Roi Yehoshua
PatrolAsync TAO Machine (1) TAO(Patrol) { TAO_PLANS { Start, TurnToGoal, MoveToGoal, Switch } TAO_START_PLAN(Start); TAO_BGN { TAO_PLAN(Start) { TAO_START_CONDITION(true); TAO_ALLOCATE_EMPTY; TAO_STOP_CONDITION(true); TAO_NEXT(NextFirstReady) { TAO_NEXT_PLAN(TurnToGoal); TAO_NEXT_PLAN(Switch); } } (C)2014 Roi Yehoshua
PatrolAsync TAO Machine (2) TAO_PLAN(TurnToGoal) { TAO_START_CONDITION(not nearBy(WM.robotPosition, WM.goal)); cout<<"TAO_PLAN(TurnToGoal)"<<endl; TAO_ALLOCATE_EMPTY; TAO_CALL_TASK(TurnToGoal); TAO_STOP_CONDITION(headingOnTarget(WM.robotPosition, WM.goal)); TAO_NEXT(NextFirstReady) { TAO_NEXT_PLAN(MoveToGoal); } } TAO_PLAN(MoveToGoal) { TAO_START_CONDITION(not nearBy(WM.robotPosition, WM.goal)); cout<<"TAO_PLAN(MoveToGoal)"<<endl; TAO_ALLOCATE_EMPTY; TAO_CALL_TASK(MoveToGoal); TAO_STOP_CONDITION(nearBy(WM.robotPosition, WM.goal)); TAO_NEXT(NextFirstReady) { TAO_NEXT_PLAN(Switch); TAO_NEXT_PLAN(TurnToGoal); } } (C)2014 Roi Yehoshua
PatrolAsync TAO Machine (3) TAO_PLAN(Switch) { TAO_START_CONDITION(nearBy(WM.robotPosition, WM.goal)); cout<<"TAO_PLAN(MoveToGoal)"<<endl; TAO_ALLOCATE_EMPTY; changeGoal(); TAO_STOP_CONDITION(true); TAO_NEXT(NextFirstReady) { TAO_NEXT_PLAN(TurnToGoal); } } } TAO_END } (C)2014 Roi Yehoshua
Synchronizing the Start of Behavior • TAO_START_PROTOCOL – makes all the team members begin the same plan together • Should be called immediately after TAO_START_CONDITION • Uses a Barrier to synchronize team members so they all start the behavior together (C)2014 Roi Yehoshua
PatrolSync • Robots synchronize changing of their goals TAO_START_PROTOCOL Move To Goal Switch Goal Start Turn To Goal (C)2014 Roi Yehoshua
PatrolSync TAO Machine TAO_PLAN(Switch) { TAO_START_CONDITION(nearBy(WM.robotPosition, WM.goal)); cout<<"TAO_PLAN(MoveToGoal)"<<endl; TAO_START_PROTOCOL TAO_ALLOCATE_EMPTY; changeGoal(); TAO_STOP_CONDITION(true); TAO_NEXT(NextFirstReady) { TAO_NEXT_PLAN(TurnToGoal); } } (C)2014 Roi Yehoshua
Synchronizing Next Plan Selection • To define a protocol for choosing a next plan that all team members will commit to: • Create a class that inherits from decision_making::SynchProtocolNext • Implement the pure virtual function synch_decide() • Call makeDecision at the end of the function in order to store the decision in shared memory • Decision is stored as an Int32 variable, which represents the chosen plan number • This is the place to implement any voting algorithm for choosing the next plan (C)2014 Roi Yehoshua
Synchronizing Next Plan Selection • Decision process in a synchronized next protocol: bool decide(){ team()->define("next_barrier"); team()->define("next_decision"); teamwork::Barrier wait_start = team()->barrier("next_barrier"); dec = Int32(); synch_decide(); if( getLowAgentName() == self()->name){ team()->mem("next_decision") = dec; } teamwork::Barrier wait_decision = team()->barrier("next_barrier"); dec = team()->mem("next_decision"); returnsetDecision(dec.data); } (C)2014 Roi Yehoshua
PatrolSyncNext • Robots decide in which direction to turn to goal (left or right) in a synchronized manner Move To Goal Turn Left Turn Right Switch Goal Start Turn To Goal NextRandomSync (C)2014 Roi Yehoshua
NextRandomSync Class classNextRandomSync:publicdecision_making::SynchProtocolNext{ public: NextRandomSync(int& res, decision_making::CallContext* call_context, decision_making::EventQueue* events):SynchProtocolNext(res, call_context, events){} boolsynch_decide(){ vector<int> ready_index; for(size_ti=0; i<options.size(); i++) if( options[i].isReady) ready_index.push_back(i); if (ready_index.size() == 0) returnfalse; inti = randomizer.uniformInteger(0, ready_index.size() - 1); returnmakeDecision(options[ready_index[i]].id); } }; (C)2014 Roi Yehoshua
PatrolSyncNext TAO Machine (1) TAO_PLAN(TurnToGoal) { TAO_START_CONDITION(not nearBy(WM.robotPosition, WM.goal)); cout<<"TAO_PLAN(TurnToGoal)"<<endl; TAO_ALLOCATE_EMPTY; TAO_STOP_CONDITION(true); TAO_NEXT(NextRandomSync) { TAO_NEXT_PLAN(TurnToGoalLeft); TAO_NEXT_PLAN(TurnToGoalRight); } } (C)2014 Roi Yehoshua
PatrolSyncNext TAO Machine (2) TAO_PLAN(TurnToGoalLeft) { TAO_START_CONDITION(true); cout<<"TAO_PLAN(TurnToGoalLeft)"<<endl; TAO_ALLOCATE_EMPTY; TAO_CONTEXT.parameters<WorldModel>().turnLeft = true; TAO_CALL_TASK(TurnToGoal); TAO_STOP_CONDITION(headingOnTarget(WM.robotPosition, WM.goal)); TAO_NEXT(NextFirstReady) { TAO_NEXT_PLAN(MoveToGoal); } TAO_CLEANUP_BGN { publishVelocity(0,0); } TAO_CLEANUP_END } (C)2014 Roi Yehoshua
PatrolSyncNext TAO Machine (3) TAO_PLAN(TurnToGoalRight) { TAO_START_CONDITION(true); cout<<"TAO_PLAN(TurnToGoalRight)"<<endl; TAO_ALLOCATE_EMPTY; TAO_CONTEXT.parameters<WorldModel>().turnLeft = false; TAO_CALL_TASK(TurnToGoal); TAO_STOP_CONDITION(headingOnTarget(WM.robotPosition, WM.goal)); TAO_NEXT(NextFirstReady) { TAO_NEXT_PLAN(MoveToGoal); } TAO_CLEANUP_BGN { publishVelocity(0,0); } TAO_CLEANUP_END } (C)2014 Roi Yehoshua
patrol_sync_next.launch <launch> <!-- Simulation ====================================================== --> <include file="$(find lizi_description)/launch/lizi_wall.launch" /> <node name="shared_memory" pkg="teamwork" type="shared_memory" /> <node name="patrol_1" pkg="dm_teamwork_examples" type="patrol_sync_next" args="1" /> <node name="patrol_2" pkg="dm_teamwork_examples" type="patrol_sync_next" args="2" /> </launch> (C)2014 Roi Yehoshua
Custom Allocation Protocol • To define your own allocation protocol: • Create a class that inherits from decision_making::SynchProtocolAllocation • Implement the pure virtual function synch_decide() • Split the team into sub-teams and assign for each subteam its subplan • Call makeDecision for each subteam with its chosen plan ID (C)2014 Roi Yehoshua
Formation Example • In the Formation example, the team of robots is split into a leader (the agent with the lowest number) and followers • For that purpose a custom allocation protocol AllocLowToLeaderSync was defined (C)2014 Roi Yehoshua
Custom Allocation Protocol classAllocLowToLeaderSync : publicdecision_making::SynchProtocolAllocation { public: AllocLowToLeaderSync(int& res, decision_making::CallContext* call_context, decision_making::EventQueue* events):SynchProtocolAllocation(res, call_context, events) {} boolsynch_decide() { ROS_INFO("Start decision"); intleaderBehaviorId; intfollowerBehaviorId; for (inti = 0; i < options.size(); ++i) { if (options[i].name == "Leader") leaderBehaviorId = options[i].id; if (options[i].name == "Follower") followerBehaviorId = options[i].id; } vector<string> agents = team()->get_all_agents_names(); sort(agents.begin(), agents.end()); team()->subteam("leader")->add(team()->agent(agents[0])); makeDecision(team()->subteam("leader"), leaderBehaviorId); (C)2014 Roi Yehoshua
Custom Allocation Protocol for (size_ti = 1; i < agents.size(); ++i) { string followerName = "follower" + boost::lexical_cast<string>(i); team()->subteam(followerName)->add(team()->agent(agents[i])); makeDecision(team()->subteam(followerName), followerBehaviorId); } ROS_INFO("End decision"); returntrue; } }; (C)2014 Roi Yehoshua
Formation TAO Machine (1) TAO(Formation) { TAO_PLANS { Move } TAO_START_PLAN(Move); TAO_BGN { TAO_PLAN(Move) { TAO_START_CONDITION(true); ROS_INFO("Wait for barrier 'move'"); TAO_START_PROTOCOL ROS_INFO("Wait for barrier 'move'...DONE"); TAO_TEAM->define("leader_pos"); TAO_ALLOCATE(AllocLowToLeaderSync) { TAO_SUBPLAN(Leader); TAO_SUBPLAN(Follower); } TAO_STOP_CONDITION(false); TAO_NEXT_EMPTY; } } TAO_END } (C)2014 Roi Yehoshua
Formation TAO Machine (2) TAO(Leader) { TAO_PLANS { Wander } TAO_START_PLAN(Wander); TAO_BGN { TAO_PLAN(Wander) { TAO_START_CONDITION(true); TAO_CALL_TASK(SendPosition); TAO_CALL_TASK(Wandering); TAO_ALLOCATE_EMPTY; TAO_STOP_CONDITION(false); TAO_NEXT_EMPTY; } } TAO_END } (C)2014 Roi Yehoshua
Formation TAO Machine (3) TAO(Follower) { TAO_PLANS { Follow } TAO_START_PLAN(Follow); TAO_BGN { TAO_PLAN(Follow) { TAO_START_CONDITION(true); TAO_CALL_TASK(Follow); TAO_ALLOCATE_EMPTY; TAO_STOP_CONDITION(false); TAO_NEXT_EMPTY; } } TAO_END } (C)2014 Roi Yehoshua
Homework (not for submission) • Extend the patrol example to a case where the robots start at random locations in the environment • Implement a custom allocation protocol that allocates the wall segments to the nearest robots (C)2014 Roi Yehoshua