250 likes | 895 Views
Polymerization kinetics. Stepwise polymerization: any two monomers present in the reaction mixture can link together at any time. The growth of the polymer is not confined to chains that are already formed.
E N D
Polymerization kinetics • Stepwise polymerization: any two monomers present in the reaction mixture can link together at any time. The growth of the polymer is not confined to chains that are already formed. • Chain polymerization: an activated monomer attacks another monomer, links to it, then that unit attacks another monomer, and so on.
23.3 Stepwise polymerization • Commonly proceeds through a condensation reaction, in which a small molecule is eliminated in each step. • The formation of nylon-66 H2N(CH2)6NH2 + HOOC(CH2)4COOH → H2N(CH2)6NHOC(CH2)4COOH • HO-M-COOH + HO-M-COOH → HO-M-COO-M-COOH • Because the condensation reaction can occur between molecules containing any number of monomer units, chains of many different lengths can grow in the reaction mixture.
Stepwise polymerization • The rate law can be expressed as • Assuming that the rate constant k is independent of the chain length, then k remains constant throughout the reaction. • The degree of polymerization: The average number of monomers per polymer molecule, <n>
23.4 Chain polymerization • Occurs by addition of monomers to a growing polymer, often by a radical chain process. • Rapid growth of an individual polymer chain for each activated monomer. • The addition polymerizations of ethene, methyl methacrylate, and styrene. • The rate of polymerization is proportional to the square root of the initiator concentration.
The three basic types of reaction step in a chain polymerization • Initiation: I→ R. + R.vi = ki[I] M + R. → .M1 (fast) (b) Propagation: M + .M1→ .M2 M + .M2→ .M3 ░ vp = kp[M][.M] M + .Mn-1→ .Mn (c) Termination: Mutual termination: .Mn + .Mm→ Mn+m Disproportionation: .Mn + .Mm→ Mn + Mm Chain transfer: M + .Mn→ Mn + .M
Influences of termination step on the polymerization • Mutual termination: two growing radical chains combine. vt = kt ([.M])2 • Disproportionation: Such as the transfer of a hydrogen atom from one chain to another, which corresponds to the oxidation of the donor and the reduction of acceptor. vt = kt ([.M])2 • Chain transfer: vt = ?
the net rate of change of radical concentration is calculated as • Using steady-state approximation (the rate of production of radicals equals the termination rate) • The rate of polymerization vp = kp[.M][M] = kp[M] • The above equation states that the rate of polymerization is proportional to the square root of the concentration of the initiator. • Kinetic chain length, v, • <n> = 2v (for mutual termination)
Example: For a free radical addition polymerization with ki = 5.0x10-5 s-1 , f = 0.5, kt = 2.0 x107 dm3 mol-1 s-1, and kp = 2640 dm3 mol-1 s-1 , and with initial concentrations of [M] = 2.0 M and [I] = 8x10-3 M. Assume the termination is by combination. (a) The steady-state concentration of free radicals. (b) The average kinetic chain length. (c) The production rate of polymer. Solution: (a) (b) (c) The production rate of polymer corresponds to the rate of polymerization is vp: vp = kp[.M][M]
23.5 Features of homogeneous catalysis • A Catalyst is a substance that accelerates a reaction but undergoes no net chemical change. • Enzymes are biological catalysts and are very specific. • Homogeneous catalyst: a catalyst in the same phase as the reaction mixture. • heterogeneous catalysts: a catalyst exists in a different phase from the reaction mixture.
Example: Bromide-catalyzed decomposition of hydrogen peroxide: 2H2O2(aq) → 2H2O(l) + O2(g) is believed to proceed through the following pre-equilibrium: H3O+ + H2O2 ↔ H3O2+ + H2O H3O2+ + Br- → HOBr + H2O v = k[H3O2+][Br-] HOBr + H2O2 → H3O+ + O2 + Br- (fast) The second step is the rate-determining step. Thus the production rate of O2 can be expressed by the rate of the second step. The concentration of [H3O2+] can be solved [H3O2+] = K[H2O2][H3O+] Thus The rate depends on the concentration of Br- and on the pH of the solution (i.e. [H3O+]).
Exercise 23.4b: Consider the acid-catalysed reaction (1) HA + H+↔ HAH+ k1, k1’ , both fast (2) HAH+ + B → BH+ + AH k2, slow Deduce the rate law and show that it can be made independent of the specific term [H+] Solution:
23.6 Enzymes Three principal features of enzyme-catalyzed reactions: • For a given initial concentration of substrate, [S]0, the initial rate of product formation is proportional to the total concentration of enzyme, [E]0. • For a given [E]0 and low values of [S]0, the rate of product formation is proportional to [S]0. • For a given [E]0 and high values of [S]0, the rate of product formation becomes independent of [S]0, reaching a maximum value known as the maximum velocity, vmax.
Michaelis-Menten mechanism E + S → ES k1 ES → E + S k2 ES → P + E k3 The rate of product formation: To get a solution for the above equation, one needs to know the value of [ES] Applying steady-state approximation Because [E]0 = [E] + [ES], and [S] ≈ [S]0
Michaelis-Menten equation can be obtained by plug the value of [ES] into the rate law of P: • Michaelis-Menten constant: KM can also be expressed as [E][S]/[ES]. • Analysis: 1. When [S]0 << KM, the rate of product formation is proportional to [S]0: 2. When [S]0 >> KM, the rate of product formation reaches its maximum value, which is independent of [S]0: v = vmax = k3[E]0
With the definition of KM and vmax, we get The above Equation can be rearranged into: Therefore, a straight line is expected with the slope of KM/vmax, and a y-intercept at 1/vmax when plotting 1/v versus 1/[S]0. Such a plot is called Lineweaver-Burk plot, • The catalytic efficiency of enzymes Catalytic constant (or, turnover number) of an enzyme, kcat, is the number of catalytic cycles (turnovers) performed by the active site in a given interval divided by the duration of the interval. • Catalytic efficiency, ε, of an enzyme is the ratio kcat/KM,
Example: The enzyme carbonic anhydrase catalyses the hydration of CO2 in red blood cells to give bicarbonate ion: CO2 + H2O → HCO3- + H+The following data were obtained for the reaction at pH = 7.1, 273.5K, and an enzyme concentration of 2.3 nmol L-1.[CO2]/(mmol L-1) 1.25 2.5 5.0 20.0rate/(mol L-1 s-1) 2.78x10-5 5.00x10-5 8.33x10-5 1.67x10-4Determine the catalytic efficiency of carbonic anhydrase at 273.5K Answer:Make a Lineweaver-Burk plot and determine the values of KM and vmax from the graph. The slope is 40s and y-intercept is 4.0x103 L mol-1s vmax = = 2.5 x10-4 mol L-1s-1 KM = (2.5 x10-4 mol L-1s-1)(40s) = 1.0 x 10-2 mol L-1 kcat = = 1.1 x 105s-1 ε = = 1.1 x 107 L mol-1 s-1
Mechanisms of enzyme inhibition • Competitive inhibition: the inhibitor (I) binds only to the active site. EI ↔ E + I • Non-competitive inhibition: binds to a site away from the active site. It can take place on E and ES EI ↔ E + I ESI ↔ ES + I • Uncompetitive inhibition: binds to a site of the enzyme that is removed from the active site, but only if the substrate us already present. ESI ↔ ES + I • The efficiency of the inhibitor (as well as the type of inhibition) can be determined with controlled experiments