400 likes | 534 Views
Feeding, Cropping and Manure Management for Economic and Environmental Outcomes N-CyCLE. Michel A. Wattiaux and Sally Flis 1 1 Department of Dairy Science, UW-Madison wattiaux@wisc.edu. Outline. Nutrient Cycling vs. Nutrient Balance Concepts
E N D
Feeding, Cropping and Manure Management for Economic and Environmental OutcomesN-CyCLE Michel A. Wattiaux and Sally Flis1 1Department of Dairy Science, UW-Madison wattiaux@wisc.edu
Outline • Nutrient Cycling vs. Nutrient Balance • Concepts • How good can you be following current UW-Recommendations? • Farm Nutrient Balances • Balance = Inputs - outputs • Comparison of Farm Nutrient Balancers (FNB) • N-CyCLE • Linear Optimization of Whole-Farm Nutrient Management: • To maximize Net Income • To minimize whole farm P-Balance • To minimize whole-farm N-balance
Dairy Herd sub-model Feed Harvesting & Storage (Bedding) Manure Collection & Storage Water Air Soil Sub-model Crops Modeling Whole-Farm Nutrient Cycling
Imported Balance = Imports - Exports Exported Feeds Bedding Milk Animal Manure Crops Fertilizer Modeling Whole-Farm Nutrient Balance
Dairy Herd sub-model Feed Harvesting & Storage (Bedding) Manure Collection & Storage Water Air Soil Sub-model Crop Modeling Nitrogen Cycling and Balance Imported Balance = Imports - Exports Exported Feeds Bedding Milk Animal Manure Crops Fertilizer
Phosphorus Utah Utah 23 18 289 700 nr 0 49.8 204.0 25.2 7.2 25.6 0.9 2.2 0.3 0.2 0.6 0.3 1.9 0.1 0.1 0.5 10.0 0.0 8.3 3.6 0.0 25.6 0.0 21.5 na na 86.6 208.1 55.4 11.0 26.5 19.7 46.7 18.4 3.6 7.6 2.1 0.0 4.1 0.2 0.0 2.9 35.2 1.0 0.8 15.0 24.7 82.1 23.6 4.6 20.7 61.9 126.0 31.8 6.3 10.0 Efficiency3, % 28.5 39.5 42.6 42.3 73.4 N and P Balance of Utah1 and Wisconsin2 Dairies Nitrogen Study Utah Utah Wisconsin Farm 23 18 18 Cows 289 700 289 Crop, Ha nr 0 255 Inputs (M. tons/yr) Feeds Bedding Animals Fertilizer BFN Total Outputs (M. tons/yr) Animal Products Cash Crops Compost/Manure Total Balance (M. tons/yr) 1Spears et al., 2003 ; 2Towns, 2003; 3Efficiency = (Inputs/Outputs)x100
Kohn- FNB (Md) Koelsch- FNB (NE) Erb- FNB (WI) ………… % ……….. 42.1 56.9 43.1 0.9 0.9 0.8 0.2 0.2 0.2 14 18.3 13.7 42.8 23.7 30.0 NAF NAF 12.3 100 100 100 ………… % ……….. 71.1 72.1 73.1 9.7 8.8 8.3 16.1 16.0 15.7 3.1 3.1 3.0 100 100 100 Comparison of Farm Nutrient Balancers1 (FNB) Kohn- FNB (Md) Koelsch- FNB (NE) Erb- FNB (WI) 18 Wisconsin Dairies Inputs ….M. tons/yr …..… Feeds 25.2 25.2 25.1 Bedding 0.3 0.2 0.3 Animals 0.1 0.1 0.1 Fertilizer 8.3 8.3 8.3 Biological N Fixation 21.5 7.6 13.9 Atmospheric Deposition NAF NAF 5.6 Total 55.4 41.4 53.4 Outputs ….M. tons/yr …..… Milk 16.4 16.3 17.5 Animals 1.9 1.8 1.7 Cash Crops 4.1 4.1 4.1 Compost/Manure 1.0 1.0 1.0 Total 23.6 23.2 24.4 Balance (M. tons/yr) 31.8 18.2 29.0 Efficiency2, % 42.6 56.1 45.6 1Towns, 2003; 2Efficiency = (Inputs/Outputs)x100
Annual N-Balances1 Kohn- FNB (Md) Koelsch- FNB (NE) Erb- FNB (WI) 18 Wisconsin Dairies Units SE a b a N-Balance Metric tons N / yr 31.8 18.2 29.0 3 a b a N-Balance Metric ton N / (Animal Unit/ Ha) 16.9 9.2 15.4 2 a b a N-Balance Kg N / Animal Unit 68 38 63 4 a b a N-Balance Kg N / Cow 121 67 113 8 a b a N-Balance Kg N/ N-requiring Ha 279 160 258 18 a b a N-Balance Kg N / Total Crop Ha 130 77 121 6 a.b.Means in the same row not sharing a common supersript differ (P<.05) 1Towns, 2003.
Fertilizer purchased by Farm # 2 = 2,385 kg N De-Facto Credit = (13,049 - 2,385) = 146.5 kg N/ ha N-requiring Crops 72.9 “De-Facto” Nitrogen Credit Farm # 2 N Recommended Crop Kg Ha Kg/ha Alfalfa 0 0 121.5 Corn 179 13,049 72.9 Soybean 0 0 36.5 Total Crops, ha -- 0 230.9 Total N-requiring, ha 160 13,049 72.9 Potential N-Credit = Sum of N from manure and Legume-credit N.
Crop Fertilization on Wisconsin Dairies When estimated de-facto credit is LESS THAN the Potential N credit it means that producers are not taking advantage of all the credits that could be taken with the legumes and manure produced on farm (9 out of 17 farms) On the other hand, when defacto credit is MORE THAN Potential N credit, the producer are likely to under fertilize their crops (8 out of 17 farms)
“De-Facto” Nitrogen Credit Farms Crop All SE Small1 Large2 De-Facto N-credit, kg N/ha N-requiring Crops 117 113 115 12 De-Facto N-credit % of recommendations 71 65 68 7 1Tie stall barns < 100 cows (n = 9) 2Freestall barns > 150 cows (n = 9)
N-CyCLE • Tool name: Nutrient-Cycling Crops Livestock Environment • Developers: • Michel Wattiaux*, Doris Pellerin**, Edith Chabornneau**, Sally A. Flis*, Vinicius R. Moreira* • Stage of development: • On-going * University of Wisconsin-Madison ** Université de Laval, Quebèc, CN
IMPORTS (t/y) EXPORTS (t/y) Dairy Herd A Conc. Feed E Milk 1: Hi TMR 2: Lo TMR 3: Dry Cows F Animal B Forage 4: Heifers <1 y Liquid Manure Solid Manure 5: Heifers >1 y 10 Home-grown Feeds Crops Fields in group 1 G Crops C Fertilizer Fields in group 2 Fields in group 3 Fields in group 4 H Manure D N-Fixed Fields in group 5 Balance = A + B + C + D - E - F - G - H N-CyCLE v.2.5
215 1674 82888 2.0 37156 50 0.8 430 1459 81989 3.1 37157 51 0.8 645 1244 81039 3.5 37157 51 0.9 860 1029 79822 4.1 37157 51 0.9 1075 814 75370 7.4 37157 51 1.1 1290 599 62540 16.1 41821 4715 1.7 1505 387 33892 32.8 42462 5356 3.0 (Eco)2 Impact of Reducing P-Balanceas Predicted by N-CyCLE1 Desired Drop in P Balance (kg/y) Increase in Cost of Milk Production ($/hl) P Balance (kg/y) Farm Net Income $ Loss of Income ($/ kg/ drop) Change in N-Balance (kg/y) N-Balance (kg/y) … 1889 83317 … 37106 … … 1Farm data from Towns, 2003: 18 farms, 270 ha, 290 cows, assuming milk price = $15/cwt
615 36491 80729 4.2 1820 -69 0.9 1230 35876 79485 3.1 1786 -103 0.9 1845 35261 79463 2.1 1942 53 0.9 2460 34646 76888 2.6 1988 99 1.1 3075 34031 73611 3.2 2058 169 1.2 3690 33416 65292 4.9 2182 293 1.6 4305 32801 56943 6.1 2267 378 2.0 31200 Observed in Towns’ study (Eco)2 Impact of Reducing N-Balanceas Predicted by N-CyCLE1 Desired Drop in N Balance (kg/y) Increase in Cost of Milk Production ($/hl) N Balance (kg/y) Farm Net Income $ Loss of Income ($/ kg/ drop) Change in P-Balance (kg/y) P-Balance (kg/y) … 37106 83317 … 1889 … … 1Farm data from Towns, 2003: 18 farms, 270 ha, 290 cows, assuming milk price = $15/cwt
Schauff Farm Sparta, WI • 75 Milking Cows, tie stall barn • 1 Lactating group TMR • 1 Dry cow ration • 2 Heifer groups • Three land units (3 “farms”) • 40 hectares • 40 hectares • 24 hectares • Manure Storage / Spreading • Liquid broadcasted, no incorporation (cows) • Solid, Box spreader, no incorporation (Heifers)
Default vs. Farm Specific Inputs • Herd Description • Inputs as provided by producer • Economic Inputs • Milk price from the farm • Default: Livestock Income, variable costs. • Ration Composition • Lactating ration guidelines from the farm • Default ration guidelines for dry cow and heifer rations • Feed Produced (Fed or Sold) • From 5 different possible rotations • Feed Purchase • 10 concentrates (energy, protein, mineral, fiber sources)
+7,243 - (+19,177) = -11,934 -171 - (+313) = -484 +3,949 - (+293) = +3,656 +3% +10% -16% -14% +24% -18.% +26% +4% +51% Change if objective = Min. P-Balance Summary of OptimizationsFrom Max. Income to Min. P-balance Economics Phosphorus Nitrogen Net Farm Income Incomes Costs Inputs Export Balance Inputs Export Bal ………... $ ……… ………..kg/y ……… ………..kg/y ……… Max. Income 264,130 - 190,119 = 74,011 1,227 - 1,315 = -88 15,283 - 8,108 = 7,175 Average Cost of reducing whole-farm P-balance ($/kg) = 11,934 / 484 = 24.7
235,016 235,016 131,240 131,240 6,412 6,412 18,707 34,122 22,702 29,945 20,272 21,498 13,847 13,928 6,053 8,507 264,130 271,373 190,119 209,296 Where Does the Increased Cost Come From? Incomes ……….$ …….. Expenses ……….$ …….. Max. Inc. Min. P-Bal Max. Inc. Min. P-Bal Milk Herd (Fx+Vr) Animals Purchased feeds Crops Feed Storage Crops Fertilization
Changes in Cropping and Feeding Strategies Mx Income Min. P-Balance Produced Fed Sold Produced Fed Sold ………..Tons/y ……… ………..Tons/y ……… Corn Silage 251 201 50 385 335 50 Alfalfa Silage 215 215 0 108 108 0 Soybean (whole) 43 43 0 13 6 7 Corn Grain 189 189 0 333 118 216 Wheat (grain) 42 0 42 21 0 21 Wheat (Straw) 25 0 25 12 12 12
Purchased Fertilizer 18-46-0 0 0 0 0 0 0 27-0-0 0 0 0 0 11.3 6.7 0-46-0 0.5 0.7 0 0 0 0 0-0-60 0 0 0 0 0 0 Manure Solid 0 0 272 272 0 0 Liquid 976 900 441 755 970 592 Excess Application rate (kg/ha) Nitrogen 10 7 0 28 0 0 Phosphorus 0 0 18 0 0 0 Potassium 7 0 81 12 46 48 Changes in Rotation and Fertilization Plan Mx Income Min. P-Balance 1 2 3 Land Units 1 2 3 ………..Tons/y ……… ………..Tons/y ……… Rotation CCCSWAAA SCC CCC CCC CCCSWAAA
Changes in Feed Purchased Mx Income Min. P-Balance ………..Tons/y ……… ………..Tons/y ……… Mixed Silage 0 33.8 Corn Grain 0.4 0 Mixed Hay 30.3 0 Straw 0 21.0 Calcium Fats 0 15.4 Soybean m. expellers 0 0.1 Soybean m. solvent 12.4 82.6 Corn Gluten meal 7.3 7.5 Corn Distiller’s grain 85.7 0 Urea 3.1 3.8 Cotton 0 0.4 Calcium Carbonate 4.9 7.3 Di-Calcium-Phosphate 0.3 1.5
-1,119 - (+16,997) = -18,116 +2,108 - (-14) = +2122 -2,857 - (-815) = -2,041 -0.4% +9% -25% 172% -1% 2,511% -19% -10% -28% Change if objective = Min. N-Balance Summary of OptimizationsFrom Max. Income to Min. N-balance Economics Phosphorus Nitrogen Net Farm Income Incomes Costs Inputs Export Balance Inputs Export Bal ………... $ ……… ………..kg/y ……… ………..kg/y ……… Max. Income 264,130 - 190,119 = 74,011 1,227 - 1,315 = -88 15,283 - 8,108 = 7,175 Average Cost of reducing whole-farm N-balance ($/kg) = 18,116/ 2,041 = 8.9
235,016 235,016 131,240 131,240 6,412 6,412 18,707 32,086 22,702 21,583 20,272 22,256 13,847 14,209 6,053 7,325 264,130 263,011 190,119 207,116 Where Does the Increased Cost Come From? Incomes ……….$ …….. Expenses ……….$ …….. Max. Inc. Min. N-Bal Max. Inc. Min. N-Bal Milk Herd (Fx+Vr) Animals Purchased feeds Crops Feed Storage Crops Fertilization
Changes in Cropping and Feeding Strategies Mx Income Min. N-Balance Produced Fed Sold Produced Fed Sold ………..Tons/y ……… ………..Tons/y ……… Corn Silage 251 201 50 348 298 50 Alfalfa Silage 215 215 0 215 215 0 Soybean (whole) 43 0 43 25 0 25 Corn Grain 189 189 0 189 134 55 Wheat (grain) 42 0 42 42 0 42 Wheat (Straw) 25 0 25 25 0 24
Purchased Fertilizer 18-46-0 0 0 0 1.6 0 0 27-0-0 0 0 0 0 0 0 0-46-0 0.5 0.7 0 0.3 1.1 0 0-0-60 0 0 0 3.4 0.8 0 Manure Solid 0 0 272 272 0 0 Liquid 976 900 441 29 761 1,528 Excess Application rate (kg/ha) Nitrogen 10 7 0 0 0 0 Phosphorus 0 0 18 0 0 49 Potassium 7 0 81 0 0 182 Changes in Rotation and Fertilization Plan Mx Income Min. N-Balance 1 2 3 Land Units 1 2 3 ………..Tons/y ……… ………..Tons/y ……… Rotation CCCSWAAA SCC CCCSWAAA CCC
Changes in Feed Purchased Mx Income Min. N-Balance ………..Tons/y ……… ………..Tons/y ……… Mixed Silage 0 1.9 Corn Grain 0.4 0 Mixed Hay 30.3 0 Straw 0 0 Calcium Fats 0 13.9 Soybean m. expellers 0 37.4 Soybean m. solvent 12.4 16.8 Corn Gluten meal 7.3 1.0 Corn Distiller’s grain 85.7 0 Urea 3.1 1.7 Cotton 0 2.6 Calcium Carbonate 4.9 0.5 Di-Calcium-Phosphate 0.3 12.1
Summary and Conclusions • Farm Nutrient Balancer • Balance and cycle of Nutrients are are two complementary ways to study the efficiency of use of nutrients on farms • Nitrogen balances appear lower on Wisconsin farms than on Western dairies • Wisconsin producers appear to rely “heavily” on internal sources on N for N fertilization of their crops (high “de-facto” N credit) • N-CyCLE • Optimize feed purchase, crop production, and manure management in one decision-making tool. • Can be used to estimate costs associated with changes in management practices that are driven by “environmental concerns” • Higher overall efficiencies of cycling should be obtained from considering both N and P together • Manure (and its composition) is key to effective N and P utilization on farm (ideal N/P ratio of manure is the N/P ratio of N-requiring crops)