280 likes | 375 Views
The High, the Low and the Ugly. Muriel Médard. Collaborators. Nadia Fawaz, Andrea Goldsmith, Minji Kim, Ivana Maric. Regimes of SNR. Recent work has considered different SNR regimes High SNR: Deterministic models Analog coding models Low SNR: Hypergraph models Other SNRs: the ugly. R 1.
E N D
The High, the Low and the Ugly Muriel Médard
Collaborators • Nadia Fawaz, Andrea Goldsmith, Minji Kim, Ivana Maric
Regimes of SNR • Recent work has considered different SNR regimes • High SNR: • Deterministic models • Analog coding models • Low SNR: • Hypergraph models • Other SNRs: the ugly
R1 Wireless Network Y(e1) e1 Model as error free links Y(e3) e3 Y(e2) e2 R2 Y(e3) = β1Y(e1) + β2Y(e2) • Open problem: capacity & code construction for wireless relay networks • Channel noise • Interference • [Avestimehr et al. ‘07]“Deterministic model” (ADT model) • Interference • Does not take into account channel noise • In essence, high SNR regime • High SNR • Noise → 0 • Large gain • Large transmit power
ADT Network Background • Min-cut: minimal rank of an incidence matrix of a certain cut between the source and destination [Avestimehr et al. ‘07] • Requires optimization over a large set of matrices • Min-cut Max-flow Theorem holds for unicast/multicast sessions. [Avestimehr et al. ‘07] • Matroidal [Goemans et al. ‘09] • Code construction algorithms [Amaudruz et al. ‘09][Erez et al. ‘10]
Our Contributions • Connection to Algebraic Network Coding [Koetter and Médard. ‘03]: • Use of higher field size • Model broadcast constraint with hyper-edges • Capture ADT network problem with a single system matrix M • Prove that min-cut of ADT networks = rank(M) • Prove Min-cut Max-flow for unicast/multicast holds • Extend optimality of linear operations to non-multicast sessions • Incorporate failures and erasures • Incorporate cycles • Show that random linear network coding achieves capacity • Do not prove/disprove ADT network model’s ability to approximate the wireless networks; but show that ADT network problems can be captured by the algebraic network coding framework
ADT Network Model • Original ADT model: • Broadcast: multiple edges (bit pipes) from the same node • Interference: additive MAC over binary field Higher SNR:S-V1 Higher SNR: S-V2 interference • Algebraic model: broadcast
Algebraic Framework • X(S, i): source process i • Y(e): process at port e • Z(T, i): destination process i • Linear operations • at the source S: α(i, ej) • at the nodes V: β(ej, ej’) • at the destination T: ε(ej, (T, i))
System Matrix M= A(I – F )-1BT c a d b f e1 e11 e9 e7 e5 e3 e8 e6 e10 e12 e2 e4 • Linear operations • Encoding at the source S: α(i, ej) • Decoding at the destination T: ε(ej, (T, i))
System Matrix M= A(I – F )-1BT c a d b f e9 e7 e11 e3 e1 e5 e12 e10 e8 e6 e4 e2 • Linear operations • Coding at the nodes V: β(ej, ej’) • F represents physical structure of the ADT network • Fk:non-zero entry = path of length kbetween nodes exists • (I-F)-1 = I + F + F2 + F3 + … : connectivity of the network (impulse response of the network) Broadcast constraint (hyperedge) F = MAC constraint(addition) Internal operations(network code)
System Matrix M = A(I – F )-1BT c a d b f e1 e5 e3 e7 e11 e9 e8 e10 e12 e4 e2 e6 • Input-output relationship of the network Z = X(S) M Captures rate Captures network code, topology(Field size as well)
Theorem: Min-cut of ADT Networks • From the original paper by Avestimehr et al. • Requires optimizing over ALL cuts between S and T • Not constructive: assumes infinite block length, internal node operations not considered • Show that the rank of M is equivalent to optimizing over all cuts • System matrix captures the structure of the network • Constructive: the assignment of variables gives a network code
Min-cut Max-flow Theorem • For a unicast/multicast connection from source S to destination T, the following are equivalent: • A unicast/multicast connection of rate R is feasible. • mincut(S,Ti) ≥ R for all destinations Ti. • There exists an assignment of variables such that M is invertible. • Proof idea:1. & 2. equivalent by previous work. 3.→1. If M is invertible, then connection has been established.1.→3. If connection established, M = I. Therefore, M is invertible. • Corollary:Random linear network coding achieves capacity for a unicast/multicast connection.
Extensions to Non-multicast Connections • [Multiple multicast] Multiple sources S1 S2 … Skwants to transmit to all destinations T1 T2… TN • Connection feasible if and only if mincut({S1 S2 … Sk}, Tj) ≥ sum of rate from sources S1 S2 … Sk • Proof idea: Introduce a super-source S, and apply the multicast min-cut max-flow theorem.
Extensions to Non-multicast Connections • [Disjoint Multicast]The connection is feasible if and only if: • Proof idea:Introduce a super-destination T, and apply the multicast min-cut max-flow theorem.
Extensions to Non-multicast Connections • [Two-level Multicast] A set of destinations, Tm, participate in a multicast connection; rest of the destinations, Td, in a disjoint multicast. The connection is feasible if and only if: • Tm: Satisfy single multicast connection requirement. • Td: Satisfy disjoint multicast connection requirement. • Random linear network coding at intermediate nodes; but a carefully chosen encoding matrix at source achieves capacity Single multicast Disjoint multicast
Incorporating Erasures in ADT network • Wireless networks: stochastic in nature • Random erasures occur • ADT network • Models wireless deterministically with parallel bit-pipes • Min-cut as well as previous code construction algorithm needs to be recomputed every time the network changes • Algebraic framework: • Robust against some set of link failures (network code will remain successful regardless of these failures) • The time average of rank(M) gives the true min-cut of the network • Applies to the connections described previously
Incorporating cycles in ADT network • Wireless networks intrinsically have bi-directional links; therefore, cycles exists • ADT network mode • A directed network without cycles: links from the source to the destinations • Algebraic framework • To incorporate cycles, need a notion of time (causal); therefore, introduce delay on links D • Express network processes in power series in D • The same theorems as for delay-less network apply
Network Coding and ADT • ADT network can be expressed with Algebraic Network Coding Formulation [Koetter and Médard ‘03]. • Use of higher field size • Model broadcast constraint with hyper-edge • Capture ADT network problem with a single system matrix M • Prove an algebraic definition of min-cut = rank(M) • Prove Min-cut Max-flow for unicast/multicast holds • Extend optimality of linear operations to non-multicast sessions • Disjoint multicast, Two-level multicast, multiple source multicast, generalized min-cut max-flow theorem • Show that random linear network coding achieves capacity • Incorporate delay and failures (allows cycles within the network) • BUT IS IT THE RIGHT MODEL?
Different Types of SNR • Diamond network [Schein] • As a increases: the gap between analog network coding and cut set increases [Avestimehr, Diggavi & Tse] • In networks, increasing the gain and the transmit power are not equivalent, unlike in point-to-point links
What about Low SNR? • Consider again hyperedges • At high SNR, interference was the main issue and analog network coding turned it into a code • At low SNR, it is noise
What about Low SNR? • Consider again hyperedges • At high SNR, interference was the main issue and analog network coding turned it into a code • At low SNR, it is noise
Peaky Binning Signal • Non-coherence is not bothersome, unlike the high-SNR regime
What Min-cut? • Open question: Can the gap to the cut-set upper-bound be closed? • An ∞ capacity on the link R-D would be sufficient to achieve the cut like in SIMO • Because of power limit at relay, it cannot make its observation fully available to destination. • Conjecture: cannot reach the cut-set upper-bound
What About Other Regimes? • The use of hyperedges is important to take into account dependencies • In general, it is difficult to determine how to proceed (see the difficulties with the relay channel) – the ugly • Equivalence leads to certain bounds for multiple access and broadcast channels, but these bounds may be loose