370 likes | 493 Views
TN8211 “ Inleiding Elementaire Deeltjes ” Twee delen: Theorie: Paul de Jong Technologie: Instrumentatie: Harry van der Graaf. Op Maandag 16 Dec Donderdag 9 Jan Donderdag 16 Jan Donderdag 23 Jan Maandag 27 Jan: voor de helft; vragenuurtje besprekening huiswerk (terugkoppeling)
E N D
TN8211 “Inleiding Elementaire Deeltjes” • Twee delen: • Theorie: Paul de Jong • Technologie: Instrumentatie: Harry van der Graaf
Op Maandag 16 Dec • Donderdag 9 Jan • Donderdag 16 Jan • Donderdag 23 Jan • Maandag 27 Jan: voor de helft; vragenuurtje • besprekening huiswerk (terugkoppeling) • hoorcollege 1 • hoorcollege 2 • oefening • Examen: donderdag 30 januari 9:00 – 12:00 h. Open Boek examen!
Huiswerk • inleveren • als pdf: mailen naar vdgraaf@nikhef.nl • vanaf twee dagen voor het volgende college • uiterlijk voor 16:00 h op de dag voor het college • samenwerking in groepen wordt aangemoedigd • maar: strikt individueel inleveren! • Huiswerk heeft drie componenten: • terugblik op de stof: makkelijke vragen • vragen waarover je moet nadenken (en slim & creatief mag zijn) • ‘examen’ vraag over de stof daarvoor
Elementary Particles Radiation Technology, Instrumentation Radiation detection Accelerators (Relativity!) Particle Physics experiments Fixed Target experiments Collider experiments astro-particle physics new physics: dark matter Medical radiation: Medical imaging Radiation therapy, beam therapy Nuclear power (fusion, fission) veel demo’s! Instrumentatie: niet moeilijk, wel veel
Introduction short history overview The first particles: atoms, electrons, ions The first particle detectors a modern solid-state particle detector
History Wimshurst’s electricity generator, Leidsche Flesschen
Glazen buizen: gasontlading Hoogspanning generatoren (Wymhurst), transformatoren (Rumkorff) Ontdekking radiogolven: 1867 Maxwell (theory) 1887 Heinrich Hertz 1887 Marconi Vacuumpompen Beschikbaarheid (zuivere) gassen Marconi
First accelerator: cathode ray tube J.J. Thomson
Efield = V / D • With electron charge q: • F = q . Efield • electron kinetic energy: • Ee- = F dD = q.V • Ee- independent of: • distance D • particle mass heated filament distance D Potential diffence V Ee- = q.V
ElectronVolt: eV Energy unit: ElectronVolt: eV 1000 eV = 1 keV 1000 MeV = 1 GeV 1000 GeV = 1 TeV 1 eV = |q| Joules = 1.6 x 10-19 Joules
Van de Graaff accelerator Vertical construction is easier as support of belt is easier Corona discharge deposits charge on belt From: Principles of Charged Particle Acceleration Stanley Humphries, Jr., on-line edition, p. 222. http://www.fieldp.com/cpa/cpa.html Left: Robert van de Graaff
Faraday Cage! HV = 10 kV gnd belt
Lorentz Force - Electrostatic deflection Fe = q. Eperp + Magnetic deflection: Lorentz force FL = q.v.B ✪ Electron beam propagates as straight line if: q/m = Eperp2/(2.V.B2) Constant ratio of mass and charge Definition of electron
v v of twee electronen ? twee parallel bewegende electronen waarnemer meebewegend alleen statische kracht Lorentz kracht erbij Relativiteit Hoe kan dat nou?
Lorentz Transformation Albert Einstein’s Special Theory on Relativity • Speed of light c is invariant for coordinate transformations z’ = z+vt • time definition varies with coordinate transformation Snel in te zien via experiment in trein: Klok, gemaakt van twee spiegels. Tweelingparadox Lorentzcontractie trein staat stil trein beweegt t.o.v. stilstaande waarnemer erboven
Wilhelm Conrad Roentgen Nobel Prize 1901 • X-ray tube: • accelerate electrons with a voltage of typically 20 - 100 kV • and stop them in the anode • electrons radiate in the strong electric field of the (heavy, e.g. W) atomic nuclei ("Bremsstrahlung") in the anode -> generation of X-rays • Most of the energy of the electrons is converted into heat -> anode may need to be cooled (water cooling) and/or to be rotated • Low energy X-rays can be removed by passing the X-rays through a suitable material
Radio activity X-rays Henri Bequerel uranium Marie Curie radium, polonium Rutherford: Alfa beta gamma rays Photographic emulsion
Rutherford atomic model: extreme ratios of E/m Emptyness, nucleon 1905: Einstein/Planck E = h ν: Small dimensions High energy Quantum Mechanics Diameter atom: ~ 1 nm Diameter nucleon: ~ 10-4 nm E = h ν = h c/λ E: energy h: Planck’s Constant c: velocity of light λ: wavelength Albert Einstein Planck's constant = 6.626068 × 10-34 m2 kg / s ‘high energy physics’ ‘high’ with respect to ‘classical’ physics
Lorentz Transformation Albert Einstein’s Special Theory on Relativity • Speed of light c is invariant for coordinate transformations z’ = z+vt • time definition varies with coordinate transformation
From Einstein’s Special Theory on Relativity: • For moving particle (‘system’ of just one moving particle!) • Total Energy (of system) = Kinetic Energy + Rest Mass eq. Energy • E2 = mo2 c4 + p2c2 [classic: E = ½ mv2 ] • With: • = v / c, and the Lorentz factor γ: relativistic mass mr = γ m0 γ = 1 / sqrt(1- 2), and = sqrt(γ2 -1) / γ So: total energy E = m0c2 sqrt(1+ 2γ2) [= rest mass energy eq. + kinetic energy] = γ m0c2 = mrc2
Radio activity X-rays Henri Bequerel uranium Marie Curie radium, polonium Rutherford: Alfa beta gamma rays Photographic emulsion
Rutherford atomic model: extreme ratios of E/m Emptyness, nucleon Einstein/Planck E = h ν: Small dimensions High energy Quantum Mechanics Diameter atom: ~ 1 nm Diameter nucleon: ~ 10-4 nm E = h c/λ E: energy h: Planck’s Constant c: velocity of light λ: wavelength Albert Einstein ‘high energy physics’ ‘high’ with respect to ‘classica’l physics
CERN accelerator complex to Gran-Sasso (730 km)
Natural radioactivity Uranium, Radon, Thorium ‘induced’ radioactivity: irradiation with neutrons, protons, gamma’s Particle Physics/High Energy Physics experiments accelerators fixed target experiments collider experiments
Measurement (detection) of particles Ionisation radiation Interaction of radiation with matter Fast charged particles transversing matter
μ+μ - π+π- p e charged particles n π0 γ υ neutral particles
Detection of charged (and energetic) particles e- muon (b.v.) Energy transfer: mainly to electrons Ionisation: forming elecron-ion pairs
Essential (in gas): - creation of electron-ion pairs - number of clusters per mm tracklength - number of electrons per cluster specific for gas(and density ρ, thus T, P!, and work function W)
Ionisation scintillation (followed by light detection) electron-ion pairs: charge separation, charge signals in gas, in semiconductors photographic emulsions: blackening cloud chambers bubble chambers Detection of non-charged (neutral) particles: - conversion to charged particle (e-, proton) - detection of charged particle
Scintillation ZnS scintillator viewed by naked eye Rutherford Experiment scintillator Photomultiplier Si avalanche diode
Cloud Chambers Bubble Chambers Core for growing droplet or bubble ‘made possible’ by ion or electron
Bubble chamber picture showing delta-rays The red arrows indicate some of the d-electrons, looping in the magnetic field applied CERN photo, http://weblib.cern.ch/Home/Media/Photos/CERN_PhotoLab/?p=
Bubble chamber photograph shows different bubble density along tracks for different particle momenta and particle type. http://physics.hallym.ac.kr/education/hep/adventure/bubble_chamber.html
Gaseous Detectors Spark Chamber Passing charged particle detected by sci HV is put over even/odd plates Charge separation (electrons-ions) Electron Avalanche (breakdown, spark) Visible light from exited He/Ne atoms