1 / 19

Some Useful Distributions

Some Useful Distributions. Binomial Distribution. Bernoulli 1720 k=0:20; y=bino c df(k,20,0.5); s tairs (k,y) grid on. k=0:20; y=binopdf(k,20,0.5); stem(k,y). Binomial Distribution. function y=mybinomial(n,p) for k=0:n

macdonaldr
Download Presentation

Some Useful Distributions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Some Useful Distributions

  2. Binomial Distribution Bernoulli 1720 k=0:20; y=binocdf(k,20,0.5); stairs(k,y) grid on k=0:20; y=binopdf(k,20,0.5); stem(k,y)

  3. Binomial Distribution function y=mybinomial(n,p) for k=0:n y(k+1)=factorial(n)/(factorial(k)*factorial(n-k))*p^k*(1-p)^(n-k) end k=0:20; y=mybinomial(20,0.5); stem(k,y) k=0:20; y=binopdf(k,20,0.1); stem(k,y)

  4. Geometric Distribution Warning: Matlab assumes k=0:20; y=geopdf(k,0.5); stem(k,y) k=0:20; y=geocdf(k,0.5); stairs(k,y) axis([0 20 0 1])

  5. Geometric Distribution function y=mygeometric(n,p) for k=1:n y(k)=(1-p)^(k-1)*p; end k=1:20; y=mygeometric(20,0.5); stem(k,y) k=1:20; y=mygeometric(20,0.1); stem(k,y)

  6. Poisson Distribution Poisson 1837 k=0:20; y=poisspdf(k,5); stem(k,y) k=0:20; y=poisscdf(k,5); stem(k,y) grid on

  7. Poisson Distribution function y=mypoisson(n,lambda) for k=0:n y(k+1)=lambda^k/factorial(k)*exp(-lambda); end k=0:10; y=mypoisson(10,0.1); stem(k,y) axis([-1 10 0 1]) k=0:10; y=mypoisson(10,2); stem(k,y) axis([-1 10 0 1])

  8. Uniform Distribution x=0:0.1:8; y=unifpdf(x,2,6); plot(x,y) axis([0 8 0 0.5]) x=0:0.1:8; y=unifcdf(x,2,6); plot(x,y) axis([0 8 0 2])

  9. Normal Distribution Gauss 1820 x=0:0.1:20; y=normpdf(x,10,2); plot(x,y) Warning: Matlab uses x=0:0.1:20; y=normcdf(x,10,2); plot(x,y)

  10. Normal Distribution function y=mynormal(x,mu,sigma2) y=1/sqrt(2*pi*sigma2)*exp(-(x-mu).^2/(2*sigma2)); x=-6:0.1:6; y1=mynormal(x,0,1); y2=mynormal(x,0,4); plot(x,y1,x,y2,'r'); legend('N(0,1)','N(0,4)')

  11. Exponential Distribution Warning: Matlab assumes x=0:0.1:5; y=exppdf(x,1/2); plot(x,y) x=0:0.1:5; y=expcdf(x,1/2); plot(x,y)

  12. Exponential Distribution function y=myexp(x,lambda) y=lambda*exp(-lambda*x); x=0:0.1:10; y1=myexp(x,2); y2=myexp(x,0.5); plot(x,y1,x,y2,'r') legend('lampda=2','lambda=0.5')

  13. Rayleigh Distribution x=0:0.1:10; y1=raylpdf(x,1); y2=raylpdf(x,2); plot(x,y1,x,y2,'r') legend('sigma=1','sigma=2')

  14. Poisson Approximation to Binomial n=100; p=0.1; lambda=10; k=0:n; y1=mybinomial(n,p); y2=mypoisson(n,lambda); stem(k,y1) hold on stem(k,y2,’r’)

  15. Normal Approximation to Binomial DeMoivre – Laplace Theorem 1730 If X is a binomial RV is approximately a standard normal RV A better approximation

  16. Normal Approximation to Binomial function normbin(n,p) clf y1=mybinomial(n,p); k=0:n; bar(k,y1,1,'w') hold on x=0:0.1:n; y2=mynormal(x,n*p,n*p*(1-p)); plot(x,y2,'r')

  17. Central Limit Theorem function k=clt(n) % Central Limit Theorem for sum of dies m=(1+6)/2; % mean (a+b)/2 s=sqrt(35/12); % standart deviation sqrt(((b-a+1)^2-1)/12) for i=1:n x(i,:)=floor(6*rand(1,10000)+1); end for i=1:length(x(1,:)) % sum of n dies y(i)=sum(x(:,i)); z(i)=(sum(x(:,i))-n*m)/(s*sqrt(n)); end subplot(2,1,1) hist(y,100) title('unormalized') subplot(2,1,2) hist(z,100) title('normalized')

  18. Central Limit Theorem

  19. Central Limit Theorem

More Related