1 / 40

Least squares & Rietveld

Least squares & Rietveld. Have n points in powder pattern w/ observed intensity values Y i obs Minimize this function:. Least squares & Rietveld. Minimize this function: Substitute for Y i calc background at point i. Least squares & Rietveld. Minimize this function:

Download Presentation

Least squares & Rietveld

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Least squares & Rietveld Have n points in powder pattern w/ observed intensity values Yiobs Minimize this function:

  2. Least squares & Rietveld Minimize this function: Substitute for Yicalc background at point i

  3. Least squares & Rietveld Minimize this function: Substitute for Yicalc scale factor

  4. Least squares & Rietveld Minimize this function: Substitute for Yicalc no. of Bragg reflections contributing intensity to point i

  5. Least squares & Rietveld Minimize this function: Substitute for Yicalc integrated intensity of j th Bragg reflection (area under peak)

  6. Least squares & Rietveld Minimize this function: Substitute for Yicalc peak shape function

  7. Least squares & Rietveld Minimize this function: Substitute for Yicalc xj= 2qjcalc – 2qi

  8. Least squares & Rietveld FOMs Profile residual

  9. Least squares & Rietveld FOMs Profile residual Weighted profile residual

  10. Least squares & Rietveld FOMs Bragg residual

  11. Least squares & Rietveld FOMs Bragg residual Expected profile residual

  12. Least squares & Rietveld FOMs Goodness of fit

  13. Least squares & Rietveld

  14. Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups

  15. Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts

  16. Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts Check FOMs - Converging? Always inspect plot of obs and calc data, and differences

  17. Rietveld- background Common background function - polynomial bi = S Bm (2qi)m determine Bs to get backgrd intensity bi at ith point N m=0

  18. Rietveld- background Common background function - polynomial bi = S Bm (2qi)m determine Bs to get backgrd intensity bi at ith point Many other functions bi = B1 + S Bm cos(2qm-1) Amorphous contribution bi = B1 + B2 Qi + S (B2m+1 sin(QiB2m+2))/ QiB2m+2 Qi = 2π/di N m=0 N m=2 N-2 m=1

  19. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6

  20. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 axial divergence

  21. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 axial divergence p1 = –h2 K1/3R R = diffractometer radius p2 = –h2 K2/3R K1,K2 = constants for collimator h = specimen width

  22. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 flat sample

  23. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 flat sample p3 = – a2/K3a = beam divergence K3 = constant

  24. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 specimen transparency

  25. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 specimen transparency p4 = 1/2meffR meff = effective linear absorption coefficient

  26. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 specimen displacement p5 = –2s/R s = displacement

  27. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 zero error

  28. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 p4, p5, &p6 strongly correlated when refined together

  29. Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 p4, p5, &p6 strongly correlated when refined together When instrument correctly aligned, generally need get only p5

  30. Preferred orientation In powder diffractometry, usually assume random orientation For this, need >106 randomly oriented particles

  31. Preferred orientation In powder diffractometry, usually assume random orientation For this, need >106 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry

  32. Preferred orientation S = s - so so s In powder diffractometry, usually assume random orientation For this, need >106 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry

  33. Preferred orientation March-Dollase function (a la GSAS) plates needles

  34. Preferred orientation March-Dollase function (a la GSAS) plates needles multiplier in intensity equation # symmetrically equivalent reflections

  35. Preferred orientation March-Dollase function (a la GSAS) plates needles multiplier in intensity equation # symmetrically equivalent reflections preferred orientation parameter (refined)

  36. Preferred orientation March-Dollase function (a la GSAS) plates needles multiplier in intensity equation # symmetrically equivalent reflections preferred orientation parameter (refined) angle betwn orientation axis & diffraction vector for hkl

  37. Preferred orientation March-Dollase function - needles probability of reciprocal lattice point to be in reflecting position

  38. Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation

  39. Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation harmonic coefficients harmonic functions

  40. Preferred orientation Preferred orientation model using 2nd & 4th order spherical harmonics for (100) in orthorhombic

More Related