420 likes | 567 Views
Least squares & Rietveld. Have n points in powder pattern w/ observed intensity values Y i obs Minimize this function:. Least squares & Rietveld. Minimize this function: Substitute for Y i calc background at point i. Least squares & Rietveld. Minimize this function:
E N D
Least squares & Rietveld Have n points in powder pattern w/ observed intensity values Yiobs Minimize this function:
Least squares & Rietveld Minimize this function: Substitute for Yicalc background at point i
Least squares & Rietveld Minimize this function: Substitute for Yicalc scale factor
Least squares & Rietveld Minimize this function: Substitute for Yicalc no. of Bragg reflections contributing intensity to point i
Least squares & Rietveld Minimize this function: Substitute for Yicalc integrated intensity of j th Bragg reflection (area under peak)
Least squares & Rietveld Minimize this function: Substitute for Yicalc peak shape function
Least squares & Rietveld Minimize this function: Substitute for Yicalc xj= 2qjcalc – 2qi
Least squares & Rietveld FOMs Profile residual
Least squares & Rietveld FOMs Profile residual Weighted profile residual
Least squares & Rietveld FOMs Bragg residual
Least squares & Rietveld FOMs Bragg residual Expected profile residual
Least squares & Rietveld FOMs Goodness of fit
Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups
Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts
Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts Check FOMs - Converging? Always inspect plot of obs and calc data, and differences
Rietveld- background Common background function - polynomial bi = S Bm (2qi)m determine Bs to get backgrd intensity bi at ith point N m=0
Rietveld- background Common background function - polynomial bi = S Bm (2qi)m determine Bs to get backgrd intensity bi at ith point Many other functions bi = B1 + S Bm cos(2qm-1) Amorphous contribution bi = B1 + B2 Qi + S (B2m+1 sin(QiB2m+2))/ QiB2m+2 Qi = 2π/di N m=0 N m=2 N-2 m=1
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 axial divergence
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 axial divergence p1 = –h2 K1/3R R = diffractometer radius p2 = –h2 K2/3R K1,K2 = constants for collimator h = specimen width
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 flat sample
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 flat sample p3 = – a2/K3a = beam divergence K3 = constant
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 specimen transparency
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 specimen transparency p4 = 1/2meffR meff = effective linear absorption coefficient
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 specimen displacement p5 = –2s/R s = displacement
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 zero error
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 p4, p5, &p6 strongly correlated when refined together
Rietveld-peak shift 2qobs = 2qcalc + D2q where D2q= p1/tan 2q + p2/sin 2q + p3/tan q + p4 sin 2q + p5 cos q + p6 p4, p5, &p6 strongly correlated when refined together When instrument correctly aligned, generally need get only p5
Preferred orientation In powder diffractometry, usually assume random orientation For this, need >106 randomly oriented particles
Preferred orientation In powder diffractometry, usually assume random orientation For this, need >106 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry
Preferred orientation S = s - so so s In powder diffractometry, usually assume random orientation For this, need >106 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry
Preferred orientation March-Dollase function (a la GSAS) plates needles
Preferred orientation March-Dollase function (a la GSAS) plates needles multiplier in intensity equation # symmetrically equivalent reflections
Preferred orientation March-Dollase function (a la GSAS) plates needles multiplier in intensity equation # symmetrically equivalent reflections preferred orientation parameter (refined)
Preferred orientation March-Dollase function (a la GSAS) plates needles multiplier in intensity equation # symmetrically equivalent reflections preferred orientation parameter (refined) angle betwn orientation axis & diffraction vector for hkl
Preferred orientation March-Dollase function - needles probability of reciprocal lattice point to be in reflecting position
Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation
Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation harmonic coefficients harmonic functions
Preferred orientation Preferred orientation model using 2nd & 4th order spherical harmonics for (100) in orthorhombic