1 / 31

UNIDAD 3 Ingeniería de Materiales

UNIDAD 3 Ingeniería de Materiales. Recopilado por: Mario Guzmán Villaseñor. Tipos de Aceros. El acero es una aleación de hierro que contiene entre 0.02 y 2. 0 % de carbono en peso. Puede contener otros elementos de aleación como: manganeso, cromo, níquel y molibdeno. Aceros al carbono.

Download Presentation

UNIDAD 3 Ingeniería de Materiales

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. UNIDAD 3 Ingeniería de Materiales Recopilado por: Mario Guzmán Villaseñor

  2. Tipos de Aceros • El acero es una aleación de hierro que contiene entre 0.02 y 2.0% de carbono en peso. • Puede contener otros elementos de aleación como: manganeso, cromo, níquel y molibdeno. Aceros al carbono Aceros de baja aleación Aceros inoxidables Aceros de herramienta

  3. Acero al carbono Porcentaje de carbono Aceros al carbono • American Iron and Steel Institute (AISI) y Society of Automotive Engineers (SAE) codifica a estos aceros con un N° de cuatro dígitos:

  4. Aceros al carbono • Se clasifican en tres tipos de aceros: bajo carbono: menos de 0.2% de C.Placas metálicas para automóviles, planchas de acero, rieles de ferrocarril. medio carbono: entre 0.2% y 0.5% de C.Elementos de máquinas, partes de motores, acoplamientos. alto carbono: más de 0.5% de C.Resortes, herramientas de corte, cuchillas, partes resistentes al desgaste.

  5. Aceros de baja aleación • Son aleaciones de hierro carbono que contienen otros elementos de aleación adicionales que totalizan menos de 5% en peso aprox. • Sus propiedades mecánicas son superiores a las del grupo anterior: mayor resistencia, dureza, dureza en caliente, resistencia al desgaste, tenacidad y combinaciones más deseables de estas propiedades.

  6. Aceros de baja aleación • Efecto de los principales elementos:

  7. Aceros Inoxidables • Grupo de aceros altamente aleados diseñados para poseer alta resistencia a la corrosión además de buena combinación resistencia – ductilidad. • Principales elementos de aleación son cromo y níquel.

  8. Aceros de Herramienta • Grupo de aceros de alta aleación diseñados para usarse como herramientas de corte, dados y moldes. Se clasifican en: • De alta velocidad: se usan como herramientas de corte en procesos de maquinado. • Para trabajo en caliente: se usan en herramientas para trabajo en caliente: forja y extrusión entre otros. • Para trabajo en frío: se usan en herramientas para trabajo en frío: estampado de láminas metálicas. Pueden ser templados por aire y por aceite. • Endurecibles con agua: alto contenido de carbono, pueden ser endurecidos con agua. Bajo costo. Aplicables a bajas temperaturas.

  9. Aceros de Herramienta • Resistentes al choque: alta tenacidad, operaciones de punzonado y doblado. • Para molde: se usan para moldes de plástico y hule. • De baja aleación: aplicaciones especiales.

  10. Fundición Gris (carbono en forma escamas o láminas de grafito) Fundición Nodular (carbono esferoidal) Fundición Blanca (alta dureza) Fundición Maleable (800-900 ºC) Fundiciones de Hierro (Hierro Colado) Arrabio, chatarra, coke y caliza • Son una aleación que contiene desde un 2.11 a un 4.0% de carbono y de 1 a 3% de silicio. • Se clasifican varios grupos:

  11. Tratamientos térmicos El tratamiento térmico en el material es uno de los pasos fundamentales para que pueda alcanzar las propiedades mecánicas buscadas. La clave de los tratamientos térmicos consiste en las reacciones que se producen en el material, tanto en los aceros como en las aleaciones no férreas, y ocurren durante el proceso de calentamiento y enfriamiento de las piezas, con unas pautas o tiempos establecido. 

  12. Tratamientos térmicos del acero • Templado: su finalidad es aumentar la dureza y la resistencia del acero. • Revenido: sólo se aplica a los aceros templados, para disminuir ligeramente los efectos del temple, conservando parte de la dureza y aumentar la tenacidad. • Recocido: es empleado para suprimir las tensiones internas remanentes del temple, haciendo desaparecer la dureza. • Normalizado:tiene por objeto dejar un material en estado normal, es decir, ausencia de tensiones internas y con una distribución uniforme del carbono. Se suele emplear como tratamiento previo al temple y al revenido

  13. Tratamientos térmicos del acero Temple: El temple tiene por objeto endurecer y aumentar la resistencia de los aceros. Para ello, se calienta el acero a una temperatura (entre 900-950ºC) y se enfría luego más o menos rápidamente (según características de la pieza) en un medio como agua , aceite, etc. Revenido: Es un tratamiento habitual a las piezas que han sido previamente templadas. El revenido consigue disminuir la dureza y resistencia de los aceros templados, se eliminan las tensiones creadas en el temple y se mejora la tenacidad, dejando al acero con la dureza o resistencia deseada. Se distingue básicamente del temple en cuanto a temperatura máxima y velocidad de enfriamiento.

  14. Tratamientos térmicos del acero Recocido: Consiste básicamente en un calentamiento hasta temperatura de austenización (800-925ºC) seguido de un enfriamiento lento. Con este tratamiento se logra aumentar la elasticidad, mientras que disminuye la dureza. También facilita el mecanizado de las piezas al homogeneizar la estructura, afinar el grano y ablandar el material, eliminando la acritud que produce el trabajo en frío y las tensiones internas.

  15. Productos de barro • Vidrio • Cemento • Concreto • Carburos • Nitruros Tradicionales Modernos Cerámicos • Cerámica deriva del griego keramos que significa barro de alfarero o utensilios hechos de barro. • Si bien los metales son la clase de material más importante en ingeniería, los materiales cerámicos son más abundantes y más usados, incluye productos naturales y manufacturados. • Algunos ejemplos son:

  16. Cerámicos tradicionales Cerámicos modernos Vidrio Vidrio - cerámicos Cerámicos • Importancia comercial y tecnológica de los cerámicos: • Productos de barro para construcción • Cerámicos refractarios • Cemento • Productos de loza • Productos de vidrio • Fibras de vidrio • Abrasivos • Materiales para herramientas de corte • Aislantes cerámicos • Materiales cerámicos magnéticos • Combustibles nucleares • Productos biocerámicos

  17. Cerámicos • Las materias primas cerámicas se transforman en productos sólidos por la acción del calor, como el cocido del barro o el vidrio. • Propiedades generales que los hacen útiles como productos de ingeniería son: • Alta dureza • Buenas propiedades de aislamiento térmico y eléctrico • Estabilidad química • Altas temperaturas de fusión • Algunos inconvenientes de los materiales cerámicos: • Altamente frágiles • Prácticamente no poseen ductilidad

  18. Estructura y propiedades de los cerámicos • Los átomos están unidos mediante enlaces fuertes (más que los metales) • Poseen estructuras cristalinas o policristalinas. • Los átomos que forman un material cerámico son de variados tamaños y las fuerzas interatómicas variables por lo que la estructura cristalina es más compleja que la de un metal. • El tamaño de grano afecta sus propiedades idem a los metales. • Mayor resistencia en aquellos cerámicos de grano pequeño. • Pueden presentar el mismo tipo de defectos que los metales. • Su estructura no admite deslizamientos como los metales, por eso fallan por fractura. • Algunos cerámicos, como el vidrio poseen estructura amorfa también llamada de fase vítrea.

  19. Propiedades Mecánicas de Cerámicos • Los materiales cerámicos son rígidos y frágiles. • Su comportamiento esfuerzo deformación se puede caracterizar como perfectamente elástico. • Son más resistentes a la compresión que a la tensión. • Concentración de esfuerzos por defectos estructurales. • Un material cerámico puede ser más resistente si: • La materia prima es uniforme • El tamaño de grano es pequeño • Se minimiza la porosidad • Se introducen esfuerzos superficiales de compresión • Se refuerza con fibras • Se trata térmicamente

  20. Propiedades Físicas • Son más livianos que los metales y más pesados que los polímeros. • Puntos de fusión más altos que la mayoría de los metales. • Conductividad eléctrica en promedio más baja que en los metales, pero en un rango más amplio. • Impacto térmico, agrietamiento térmico: los cerámicos son susceptibles de experimentar fallas por expansión térmica debido a su fragilidad.

  21. Compuestos Tradicionales Compuestos Modernos Materiales Compuestos • Se consideran una cuarta categoría de materiales en ingeniería. • Importancia tecnológica de los compuestos: • Pueden obtenerse diseños fuertes, rígidos y muy livianos con relaciones resistencia/peso y rigidez/peso mayores que en aluminio y acero. • Propiedades de fatiga mejores que para metales comunes de ingeniería. Mayor tenacidad. • Se pueden hacer diseños resistentes a la oxidación. • Se pueden lograr propiedades no obtenibles con los materiales por si solos.

  22. Agente de refuerzo o fibra Matriz Metálica Fibras Cerámica Partículas Polimérica Hojuelas Componentes de un Material Compuesto • Los materiales compuestos están formados por dos fases:

  23. Matriz Matriz metálica • Consisten en una matriz metálica reforzada por una segunda fase. • Algunas fases de refuerzo son: • Partículas cerámicas: álabes de tobera y herramientas de corte. • Fibras de metales, cerámicos, carbono o boro: componentes de aviación y turbinas Matriz cerámica • Consisten en una matriz cerámica reforzada por una segunda fase. • Se emplean para aprovechar las bondades de los cerámicos y suplir algunas de sus deficiencias.

  24. Fibras • Algunas fases de refuerzo son: • Partículas • Hojuelas Matriz Matriz polimérica • Consisten en una matriz de polímero reforzada por una segunda fase. • Los más populares son los polímeros reforzados con fibras. • Algunas características de los polímeros reforzados con fibra son: • Los polímeros son generalmente termofijos o termoplásticos, una de las matrices más comunes es la resina epóxica. • Las fibras más utilizadas son el vidrio, el carbono o el Kevlar.

  25. Matriz Propiedades de los polímeros reforzados con fibra • Alta relación resistencia/peso. • Alta relación módulo de elasticidad/peso. • Alta resistencia a la fatiga. • Buena resistencia a la corrosión. • Baja expansión térmica. • Buenas propiedades de anisotropía.

  26. Fibra Partícula Hojuela Fase de Refuerzo • Pueden ser de tres tipos: Fibras • Son filamentos de sección circular, el diámetro va de 0.0025 a 0.13 mm. • Pueden ser continuas o discontinuas. • La orientación de las fibras determina la resistencia del material.

  27. Fase de Refuerzo Algunos tipos de orientación de fibras, unidimensional, plana y aleatoria Algunas fases de refuerzo son: • Vidrio: cuando refuerza plástico comúnmente se le llama fibra de vidrio. • Carbono: rígido, alto módulo elástico, baja densidad, baja expansión térmica. • Kevlar: es la fibra de polímero más importante, la mejor combinación resistencia/peso.

  28. Masa del compuesto: • Volumen del compuesto: • Densidad del compuesto: Propiedades de los Materiales Compuestos

  29. Módulo de elasticidad de un compuesto reforzado con fibras: Propiedades de los Materiales Compuestos

More Related