490 likes | 738 Views
Cellular Respiration. Mr. E. McIntyre. The basics…. Photons. chloroplaste. Photosynthesis. CO 2 + H 2 0. Organic Molecules. Cell Respiration. mitochondrion. ATP. Thermal Energy. Fermentation Partial breakdown of glucose No mitochondrion. Aerobic Respiration
E N D
Cellular Respiration Mr. E. McIntyre
The basics….. Photons chloroplaste Photosynthesis CO2 + H20 Organic Molecules Cell Respiration mitochondrion ATP Thermal Energy
Fermentation Partial breakdown of glucose No mitochondrion Aerobic Respiration Combustion = glucose comburant = O2 ETC (chemiosmosis) Catabolic Pathways (glucose) Breakdown of nutrients Without O2 With O2
Aerobic Respiration The basic equation Sugars + O2 waste + energy C6H12O6 + 6 O2 6 CO2 + 6 H2O + energy
The ATP Principle Phosphate group Price of work in AR: loss of P ATP ADP + Pi In order to be usable, energy is stored in ATP • adenosine triphosphate • rich in energy.
The ATP Principle ATP… its use ? • Works in membrane transport • Works in kinesin motors • Works in coop. with enzymes ADP + Pi ATP We produce our body weight in ATP on a daily basis!
The REDOX Principle Redox Reactions • Oxidation: loss of e • Reduction: gain of e oxidized energy e C6H12O6 + 6 O2 6 CO2 + 6 H2O + e reduced
Why many REDOX Reactions? Principles of Redox Reactions • Combustion of glucose many reactions (enzymes) • The alternative in one simple reaction… D’oh ! KaBoOM !!
The e Principle The transfer of e • The e contain a lot of energy! • Passed from one molecule to the next… • Nutrients NAD+ Electron Transport Chain O2 e e NADH +H+
The e Principle The transfer of e • Oxidized COenzyme NAD+ • nicotinamide adenine dinucleotide • The most polyvalent e acceptor oxidized reduced NAD+NADH + H+ Released into cytosol captures 2 e & 1 proton Potential energy
The e Principle esprincipes The transfer of e H2 ½ O2 2 H+ 2 e- Gradual release of energy ATP Energy explosion KaBoOM !! 2 e- ½ O2 2 H+ H2O
Aerobic Cellular Respiration General Principles 4 easy phases : Glycolysis Transition Reaction (oxidative decarboxylation) Krebs Cycle Electron Transport Chain & Chemiosmosis 1 mole glucose combusted produces … • 6 moles CO2 • 36-38 moles ATP
Aerobic Cellular Respiration electrons electrons Glycolysis Krebs Cycle ETC & chemiosmosis glucose pyruvate ATP ATP ATP
Aerobic Cellular Respiration enzyme (catalyst) Production of ATP • 10% substrate phosphorylation (phase 1 & 3) • 90% oxidative phosphorylation (phase 4) Substrate Phosphorylation pyruvate
Part 1 - Glycolysis Glycolysis = « break down of glucose » Cytosolic reactions Takes place in the presence or absence of O2 Result 1 mole glucose 2 moles pyruvate (6C) (3C)
Invesment of Energy Phase (endergonic) Phosphorylate the molecule to hydrolyse it into two parts Cost = 2 ATP Payoff of Energy phase (exergonic) Modifications of the 3C molecule Production = 4 ATP Reduction NAD+ to (2 NADH + 2H+) Part 1 - Glycolysis 2 phases
Part 1 - Glycolysis 1 glucose 1st Phase Loss 2 ADP 2 ATP Gain 2nd Phase 4 ADP 4 ATP 2 NAD+ 2 NADH + 2H+ 2 pyruvates 2 pyruvates glucose Net Production ø CO2 2 ATP 2 NADH + 2H+
Aerobic Cellular Respiration electrons electrons Glycolysis Krebs Cycle ETC & chemiosmosis glucose pyruvate ATP ATP ATP
Transition Reactions In the mitochondrion (matrix) Necessary to begin Citric Acid Cycle
Transition Reactions • Carboxyl's are removed from the pyruvates & released as CO2. • The remaining 2C molecule is further oxidized & the NAD+ is reduced to NADH + H+ (x2). • The COenzyme A bonds to the remaining molecule. • This forms two acetyl-CoA molecules that enter the Krebs Cycle.
Citric Acid Cycle (Tricarboxyllic Acid) • 1 mole acetyl Co-A (2C) enters the cycle… acetyl Co-A (2C) + oxaloacetate (4C) citrate (6C) …further breakdown of citrate back to oxaloacetate
Citric Acid Cycle e acceptors Summary for 1 mole Acetyl Co-A 2 CO2 1 ATP 3 NADH + 3H+ 1 FADH2
Citric Acid Cycle The Krebs Cycle also synthesizes Proteins (AA) Sugars Lipids (FA + chol)
Citric Acid Cycle - Summary 2 CO2 1 ATP 3 NADH + 3H+ 1 FADH2 4 CO2 2 ATP 6 NADH + 6H+ 2 FADH2 x2 pyruvate = Krebs Cycle 2 CO2 Ø ATP 2 NADH + H+ Transition Reactions Glucose completely broken down Majority of energy stored in NADH + H+ 6 CO2 2 ATP 8 NADH + H+ 2 FADH2 = for 1 mole glucose
Respiration cellulaire aérobie electrons electrons Glycolysis ETC & chemiosmosis Krebs Cycle glucose pyruvate ATP ATP ATP
Electron Transport Chain & Chemiosmosis That go between an oxidized & reduced state In the mitochondrion (cristae) The electron transport chain is comosed of… proteins non protein complexes
Electron Transport Chain & Chemiosmosis loses e- ½ O2: last electron acceptor • Captures e- NADH e- lose energy moving through chain
Electron Transport Chain & Chemiosmosis loses e- ½ O2: last electron acceptor • Captures e- NADH e- lose energy moving through chain = formation of H2O
Electron Transport Chain & Chemiosmosis • Other e- carrier FADH2 loses e- at a lower energy level (less energy NADH)
Electron Transport Chain & Chemiosmosis role: synthase ATP • Chemiosmosis • Inner mitochondrial membrane • Uses multiprotein complex known as ATP synthase oxidative phosphorylation ADP + Pi ATP
Electron Transport Chain & Chemiosmosis H+ H+ H+ H+ H+ H+ Uses a proton gradient (H+) to synthesize ATP H+ Chemiosmosis ATP synthetase: proton pump … since the membrane is impermeable to H+
Electron Transport Chain & Chemiosmosis H+ H+ H+ H+ H+ H+ H+ Chemiosmosis intermembrane space ATP synthetase: proton pump inner mito. membrane The importance of e-?!? Force the displacement of H+ from the matrix to intermembrane space ADP + Pi ATP matrix
Electron Transport Chain & Chemiosmosis NAD+ H+ NADH H+ H+ + H+
Electron Transport Chain & Chemiosmosis H+ NAD+ H+ NADH H+ + H+
Electron Transport Chain & Chemiosmosis H+ H+ NAD+ H+ NADH + H+
Electron Transport Chain & Chemiosmosis H+ H+ H+ 2 H+ + ½ O2 H20 NAD+ NADH + H+ electon transport chain chemiosmosis
Electron Transport Chain & Chemiosmosis ADP + P H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ H+ 2 H+ + ½ O2 H20 NAD+ NADH ATP + H+
Aerobic Respiration 3 ATP 2 ATP Chemiosmosis • Ratio in ATP? • NADH + H+ • FADH2
Electron Transport Chain & Chemiosmosis 24 ATP 4 ATP Chemiosmosis Summary for 1 mole of glucose: • Oxidative decarboxylation & Krebs 2 ATP 8 NADH + H+ 2 FADH2 • glycolyis 2 ATP 2 NADH + H+
Aerobic Respiration transport protein glucose 2 pyruvate • Summary NAD+ ? 2 NADH + H+ FAD ? 2 NADH + H+ 6 NADH + H+ 2 FADH2 glycolysis Electron Transport Chain Krebs Cycle TR 2 acétyle Co-A 2 ATP 2 ATP 32 ou 34 ATP 36 or 38 ATP
Other Metabolic Processes • Fermentation • Glucose metabolism without O2 • Summary 1 mole glucose 2 ATP 2 pyruvate 2 NADH + H+
Other Metabolic Processes • Fermentation • Alcolholic Fermentation Ex: production beer, wine, spirits
Other Metabolic Processes Fermentation • Lactate Fermentation Ex: production of cheese & yogurt Ex: lactate in muscles
Other Metabolic Processes • Fermentation Comparison of aerobic respiration & fermentation fermentation: last electron acceptor pyruvate dioxygen aerobic respiration… anaerobicrespiration … nitrate (NO3-) sulfate (SO42-) fer (Fe3+) Which is the most efficient? You do the math! 38 ATP vs 2 ATP
Metabolic Poisons death of the organism death of the organism • cyanide denatures enzyme cytochrome c oxidase final transport of electrons from cytochrome c oxidase to oxygen cannot be completed electrons cannot be removed; cell relies on anaerobic respiration • dicoumarol inhibits mitochondrial electron transport reversed electron flow in Complex II inhibits pyrimidines biosynthesis
Other Metabolic Pathways Something to think about
Phew…..many ATP were synthesized in the making of this presentation!