730 likes | 878 Views
ICT+ Introduction to Networks ดร. สุรศักดิ์ มังสิงห์ E-mail: surasak.mu@spu.ac.th mungsing@gmail.com URL: http://www.spu.ac.th/~surasak.mu. ICT + Agenda. Guided and Wireless Networks. Line Configuration.
E N D
ICT+ Introduction to Networksดร. สุรศักดิ์ มังสิงห์E-mail: surasak.mu@spu.ac.th mungsing@gmail.com URL: http://www.spu.ac.th/~surasak.mu
Line Configuration • รูปแบบที่เครื่องคอมพิวเตอร์ หรืออุปกรณ์สื่อสารตั้งแต่สองตัวขึ้นไป ทำการเชื่อมต่อกันโดยผ่านสื่อกลาง (Transmission Medium) ในการสื่อสารข้อมูล ซึ่งสื่อกลางนั้นอาจจะเป็นสื่อกลางที่เป็นแบบสาย (Guided Media) หรือ สื่อกลางแบบไร้สาย (Unguided Media) ก็ได้ • ลักษณะการเชื่อมต่อนั้นมีอยู่สองประเภทใหญ่ๆ คือ แบบ point-to-point(จุดต่อจุด) และ แบบ multipoint (หลายจุด)
Point-to-Point Line Configuration • การเชื่อมต่อแบบจุดต่อจุด คือการที่อุปกรณ์สื่อสาร หรือเครื่องคอมพิวเตอร์แต่ละคู่ มีจุดเชื่อมต่อกันแน่นอน และใช้เฉพาะคู่ของอุปกรณ์นั้นเท่านั้น ปริมาณหรืออัตราในการสื่อสารทั้งหมดของจุดเชื่อมต่อนั้นใช้สำหรับคู่ของอุปกรณ์ สื่อกลางที่ใช้อาจจะเป็นแบบสาย หรือแบบไร้สายก็ได้
Multipoint Line Configuration • การเชื่อมต่อแบบหลายจุด เป็นการใช้สื่อกลางในการสื่อสารร่วมกันของอุปกรณ์สื่อสาร หรือคอมพิวเตอร์ มากกว่าสองเครื่องขึ้นไป
Guided Networks: การเชื่อมโยงเครือข่าย LAN
Topology • โครงสร้างการเชื่อมต่อกันของแต่ละโหนด (อุปกรณ์สื่อสาร หรือ คอมพิวเตอร์) ภายในเครือข่าย Topology ของเครือข่ายเป็นรูปลักษณ์ทางเรขาคณิตของความสัมพันธ์ในการสื่อสารข้อมูลของแต่ละโหนดในเครือข่าย ซึ่งสามารถแบ่งออกได้เป็น 5 ประเภท Mesh, Star, Tree, Busและ Ring
Mesh Topology • การเชื่อมต่อแบบนี้ ทุกโหนดจะมีจุดเชื่อมต่อ (Link) โดยตรงไปยังโหนดอื่นๆทุกโหนดในเครือข่าย • ดังนั้นจำนวนของจุดเชื่อมต่อของเครือข่ายรูปแบบ Mesh ที่มีจำนวนโหนดอยู่ nโหนด คือ n(n-1) / 2จุดเชื่อมต่อ • โหนดแต่ละตัวจะต้องมี port I/O ในการเชื่อมต่อ (n-1)port
ข้อดี ข้อเสีย ของ Mesh Topology • มีข้อดีเหนือกว่ารูปแบบการเชื่อมต่อประเภทอื่นๆ อยู่หลายอย่างๆ เช่น อัตราความเร็วในการส่งข้อมูล ความเชื่อถือได้ของระบบ, ง่ายต่อการตรวจสอบความผิดพลาด และ ข้อมูลมีความปลอดภัยและมีความเป็นส่วนตัว • ส่วนข้อเสีย คือจำนวนจุดที่ต้องใช้ในการเชื่อมต่อ และจำนวน Port I/O ของแต่ละโหนดมีจำนวนมาก (ตามสูตรข้างต้น) ถ้าในกรณีที่จำนวนโหนดมาก เช่นถ้าจำนวนโหนดทั้งหมดในเครือข่ายมีอยู่ 100 โหนด จะต้องมีจำนวนจุดเชื่อมต่อถึง 4,950 เส้น เป็นต้น
Star Topology • แต่ละโหนดจะทำการเชื่อมต่อโดยตรง กับศูนย์กลางการควบคุมหรือที่เรียกกันโดยทั่วไปว่า Hub โหนดแต่ละโหนดไม่ได้เชื่อมต่อกันโดยตรง การที่โหนดหนึ่งๆจะส่งข้อมูลไปที่โหนดอื่นๆทำได้โดยการส่งข้อมูลผ่าน Hub เท่านั้น • วิธีการเชื่อมต่อแบบ Star นี้ทำให้ประหยัดจำนวนสายเชื่อมต่อกว่าแบบ Mesh ได้มาก • ในการเชื่อมต่อแบบนี้เช่นเดียวกับการเชื่อมต่อแบบ Mesh ซึ่งถ้าจุดเชื่อมต่อใดเกิดความเสียหาย ก็จะเกิดปัญหาเฉพาะโหนดนั้นเท่านั้น ไม่มีผลกับระบบเครือข่ายโดยรวม อย่างไรก็ตาม ถ้า Hub เกิดความเสียหายระบบโดยรวมก็จะทำงานไม่ได้ทั้งหมด
Tree Topology • การเชื่อมต่อแบบ Tree เป็นการปรับปรุงเปลี่ยนแปลงมาจากรูปแบบ Star ซึ่งแต่ละโหนดเชื่อมต่อกับ Hub ซึ่งมีอยู่สองประเภท คือ Active Hub และ Passive Hub • Hub ที่เป็นศูนย์กลางของโครงสร้างต้นไม้ทั้งหมด คือ Active Hub ซึ่งมี Repeater เป็นอุปกรณ์ช่วยในการถ่ายทอดสัญญาณให้มีระยะทางเพิ่มมากขึ้น • Hub แบบ Passive จะเป็นตัวที่เชื่อมต่อกับโหนดโดยตรง ข้อดีและข้อเสียของรูปแบบการเชื่อมต่อแบบ Tree นั้นคล้ายคลึงกับแบบ Star อย่างไรก็ตามข้อดีที่เหนือกว่าคือ สามารถเชื่อมต่ออุปกรณ์หรือโหนดได้มากกว่า และสามารถเชื่อมต่อกันได้ในระยะทางที่ไกลมากกว่า
Bus Topology • การเชื่อมต่อที่กล่าวมาแล้วข้างต้นทั้งสามแบบ (Mesh, Star, Tree) เป็นรูปแบบการเชื่อมต่อแบบจุดต่อจุด (point-to-point) ส่วนลักษณะการเชื่อมต่อแบบ Bus นั้นใช้รูปแบบการเชื่อมต่อแบบหลายจุดเข้าด้วยกัน (Multipoint) • ลักษณะการเชื่อมต่อแบบ Bus นี้จะมีสายเคเบิลเพียงเส้นเดียวที่ใช้เชื่อมต่อโนดทุกโหนดเข้าด้วยกัน ทำหน้าที่เป็นเหมือนกับกระดูกสันหลัง (backbone) ให้กับเครือข่าย โหนดแต่ละโหนดเชื่อมต่อกันได้ผ่านทางสายเคเบิลส่วนกลางนี้
Bus Topology • ลักษณะการเชื่อมต่อแบบ Bus ใช้ปริมาณสาย และจำนวนจุดในการเชื่อมต่อน้อยกว่าแบบ Mesh, Star และ Tree สายเคเบิลที่ใช้เป็นสายเคเบิลกลางจะมีจุดปิดหัวปิดท้าย (Cable Terminators) และแต่ละจุดเชื่อมต่อ (tap) ก็จะเป็นจุดที่ใช้เชื่อมต่อระหว่างเคเบิลส่วนกลางกับโหนดในเครือข่าย • ข้อเสียของลักษณะการเชื่อมต่อแบบ Bus คือ ถ้าสายเคเบิลกลางเสียหาย ก็จะทำให้ทั้งเครือข่ายทำงานไม่ได้ทั้งระบบ การเพิ่มโหนดใหม่เข้าไปในเครือข่ายทำได้ยากกว่าลักษณะการเชื่อมต่อสามแบบข้างต้น, และการส่งข้อมูลทำได้ช้ากว่าแบบอื่นเพราะต้องใช้เคเบิลกลางร่วมกัน
Ring Topology • ลักษณะการเชื่อมต่อแบบ Ring เป็นการเชื่อมต่อแบบจุดต่อจุด (point-to-point) ประเภทหนึ่ง แต่เป็นการเชื่อมต่อแบบจุดต่อจุดที่ทำการเชื่อมต่อกับโหนดอื่นๆสองโหนดเท่านั้น คือโหนดที่อยู่ก่อนหน้า และโหนดที่อยู่ถัดไป • การสื่อสารข้อมูลในเครือข่ายทำได้โดยการส่งข้อมูล ผ่านโหนดต่างๆในเครือข่ายในทิศทางเดียวจนกระทั่งถึงผู้รับ แต่ละโหนดใน Ring ทำหน้าที่เหมือนกับเป็น Repeater คือเมื่อข้อมูลที่ได้รับเข้ามา เป็นข้อมูลของโหนดอื่น ก็จะทำถ่ายทอดการส่งข้อมูลนั้นผ่านออกไปยังโหนดถัดไป
Ring Topology • เครือข่ายแบบ Ring นั้นง่ายต่อการติดตั้งและการแก้ไขเปลี่ยนแปลงทำได้ง่าย การเพิ่มโหนดเข้าไปใหม่ทำได้โดยการเปลี่ยนแปลงการเชื่อมต่อเพียงสองจุด อีกทั้งยังมีการใช้จำนวนเส้นทางในการเชื่อมต่อน้อย • การที่ข้อมูลในเครือข่ายแบบ Ring เคลื่อนที่ในทิศทางเดียว ทำให้ระยะเวลาในการส่งข้อมูลถึงแม้ว่าโหนดที่อยู่ใกล้เคียงกันก็อาจจะใช้เวลานานได้ (ถ้าโหนดที่จะส่งข้อมูลให้เป็นโหนดก่อนหน้า) เพราะข้อมูลต้องส่งต่อไปจนกระทั่งเกือบครบรอบ อีกทั้งในกรณีที่จำนวนโหนดมีมากทำให้เวลาที่ใช้ในการส่งผ่านข้อมูลนานขึ้นด้วย
Hybrid Topology • การเชื่อมต่อกันเป็นเครือข่ายนั้น ไม่จำเป็นต้องมีลักษณะการเชื่อมต่อแบบใดแบบหนึ่งทั้งหมด แต่อาจใช้ลักษณะของเครือข่ายหลายๆประเภทมารวมกันอยู่ในเครือข่ายเดียวกันได้
LAN ตามมาตรฐาน IEEE 802 • IEEE (Institute of Electrical and Electronics Engineers) ซึ่งเป็นองค์กรที่ได้สร้างมาตรฐานสากลทางด้านวิศวกรรมไฟฟ้า และคอมพิวเตอร์ ได้กำหนดมาตรฐาน สำหรับการเชื่อมโยงเครือข่ายคอมพิวเตอร์เรียกว่า IEEE 802ซึ่งมาตรฐานนี้อธิบายถึงเครือข่ายทั้งแบบ CSMA/CD (Carrier Sense Multiple Access with Collision Detection), แบบโทเคนบัส(Token Bus) และ แบบโทเคนริง (Token Ring) ซึ่งเป็น LAN ทีมีการใช้งานกันแพร่หลาย LAN ทั้งสามประเภทนี้แตกต่างกันในระดับชั้น Physical และระดับชั้นย่อย MAC แต่เนื้อหาในระดับชั้นบนของ Data Link จะเหมือนกัน ซึ่งทำให้การควบคุมการส่งข้อมูลระหว่างปลายทางทั้งสอง ตลอดจนการติดต่อกับระดับชั้น Network อยู่ในรูปแบบเดียวกัน
IEEE 802.3 Ethernet (1) • มาตรฐาน IEEE 802.3 เริ่มมาจากบริษัท Xerox ได้สร้างระบบเครือข่ายเชื่อมต่อคอมพิวเตอร์ 100 เครื่องในบริษัท โดยมีความยาวของเครือข่ายได้ถึง 1 กิโลเมตร และมีอัตราในการส่งข้อมูลถึง 2.94 Mbps ระบบนี้เรียกว่า อีเทอร์เน็ต (Ethernet) • ต่อมาบริษัท Xerox, DEC และ Intel ได้ร่วมกันพัฒนามาตรฐานอีเทอร์เน็ตซึ่งมีอัตราส่งข้อมูล 10 Mbps ซึ่งมาตรฐานนี้เป็นพื้นฐานของ IEEE 802.3
IEEE 802.3 Ethernet (2) • สำหรับมาตรฐาน 802.3 จะอธิบายถึง LAN ทั้งหมดที่ใช้หลักการของ CSMA/CD (Carrier Sense Multiple Access with Collision Detection) ที่มีอัตราการส่งข้อมูลตั้งแต่ 1 ถึง 100 Mbps และใช้สายส่งชนิดต่างๆ นอกจากนี้มาตรฐาน IEEE 802.3 และอีเทอร์เน็ตยังมีบางส่วนของส่วนหัวของข้อมูล (Header) แตกต่างกันบ้าง (ฟิลด์ความยาวของ IEEE 802.3 ถูกใช้บ่งบอกชนิดของ Packet ในมาตรฐานอีเทอร์เน็ต) ดังนั้นจะเห็นได้ว่ามาตรฐาน IEEE 802.3 จะอธิบายถึง LAN ที่ใช้วิธีส่งข้อมูลแบบ CSMA/CD ส่วนอีเทอร์เน็ตนั้นจะหมายถึงผลิตภัณฑ์ชนิดหนึ่งของแลนแบบ IEEE 802.3
IEEE 802.3 Ethernet (3) • LAN แบบนี้ส่งข้อมูลโดยใช้หลักการคล้ายๆกับการสนทนาระหว่างบุคคลหลายคน หากใครต้องการพูดก็สามารถพูดออกมาได้ในจังหวะที่ไม่มีคนอื่นพูด(เงียบ) แต่ก็อาจเป็นไปได้ที่บุคคล 2 คนจะพูดออกมาพร้อมๆกัน ทำให้เกิดการชนกันของเสียงพูด เมื่อเป็นเช่นนั้นทั้งสองคนจะต้องหยุดพูดทันที แล้วรอจังหวะที่จะพูดใหม่อีกครั้ง ซึ่งหากใครพูดก่อนก็จะสามารถพูดได้ และบุคคลอื่นๆจะต้องฟังอย่างเดียว
IEEE 802.3 Ethernet (4) • วิธีการรับส่งข้อมูลของแลน IEEE 802.3 ซึ่งเป็นแบบ CSMA/CDก็ทำงานในลักษณะเดียวกัน คือโหนดใดที่ต้องการส่งข้อมูลลงในสื่อกลางการส่งข้อมูล จะตรวจสอบดูสัญญาณในสื่อกลาง ถ้าหากสื่อกลางในการส่งข้อมูลว่างก็จะทำการส่งข้อมูลได้ทันที แต่หากโนดตั้งแต่ 2 โนดขึ้นไปส่งข้อมูลลงไปในสื่อกลางพร้อมๆกัน สัญญาณข้อมูลจะเกิดการชนกันขึ้น ทุกๆสถานีจะต้องหยุดการส่งข้อมูลแล้วรอเวลา ซึ่งช่วงเวลาของการรอแต่ละครั้งจะทำการสุ่มขึ้นมา (Random Time) หลังจากหมดเวลารอแล้วก็จะทำการตรวจสอบสัญญาณในสื่อกลางเพื่อส่งข้อมูลลงไปใหม่อีก
Collision Detection (1) • เมื่อเกิดการชนกันของสัญญาณข้อมูลแล้ว เวลาจะถูกแบ่งออกเป็นช่องๆ (slots) แต่ละช่องมีช่วงเวลา 51.2 ไมโครวินาที (นั่นคือเวลาสถานีที่ส่งข้อมูลรู้ว่าเกิดการชนกันของข้อมูลหรือไม่ สำหรับความยาวของแลน 2,500 เมตร อัตราการส่งข้อมูล 10 Mbps) หลังจากการชนกันครั้งแรก แต่ละสถานีจะสร้างตัวเลขสุ่ม (Random) ที่มีค่า 0 หรือ 1 (เลขสุ่ม 2^1 ค่า) • สถานีที่ได้ค่า 0 จะส่งข้อมูลออกไปในช่องเวลา 0 และสถานีที่ได้ค่า 1 จะส่งข้อมูลในช่องเวลาที่ 1 หากสองสถานีได้ค่าเลขสุ่มเดียวกันและส่งข้อมูลภายในช่องเวลาเดียวกัน จะเกิดการชนกันอีกครั้ง
Collision Detection (2) • หลังจากการชนกันครั้งที่ 2 แต่ละสถานีจะสร้างตัวเลขสุ่มที่มีค่า 0,1,2, หรือ 3 (นั่นคือเลขสุ่ม 2^2 ค่า) แล้วส่งข้อมูลภายในช่องเวลาของตนเอง หากชนกันอีกก็จะสร้างเลขสุ่มจำนวน 2^3 ค่า กล่าวคือหลังจากการชนกัน i ครั้ง แต่ละสถานีก็จะมีการสร้างเลขสุ่มตั้งแต่ค่า 0 ถึง 2^i-1 ค่า และสถานีก็จะส่งข้อมูลภายในช่องเวลาของตนเอง กระบวนการในการแก้ไขการชนกันของข้อมูลแบบนี้เรียกว่า Binary Exponential Back off ซึ่งจะเห็นได้ว่ากระบวนการนี้ทำให้โอกาสในการที่จะเกิดการชนกันของข้อมูลมีน้อยลง เมื่อจำนวนครั้งของการชนกันของข้อมูลมากขึ้น
ตารางแสดงเคเบิลชนิดต่างๆที่ใช้กันทั่วไปของ IEEE802.3 http://en.wikipedia.org/wiki/IEEE_802.3
Figure 12-9-continued 10BASE5
Fast Ethernet • เนื่องจากในปัจจุบันมัลติมีเดียได้มีการใช้งานกันมาก จึงมีความต้องการเครือข่ายความเร็วสูงในการเชื่อมโยงคอมพิวเตอร์เข้าด้วยกัน กลุ่มคณะทำงานของ IEEE จึงตัดสินใจที่จะปรับปรุงมาตรฐาน 802.3 ให้สามารถ รับส่งข้อมูลด้วยความเร็วสูงขึ้น ซึ่งกลายเป็นมาตรฐานที่เรียกว่า 802.3u ซึ่งเรียกกันโดยทั่วไปว่า Fast Ethernet • Fast Ethernet อีเทอร์เน็ตรูปแบบหนึ่งที่มีความเร็วสูงถึง 100 Mbps รูปแบบของเฟรมข้อมูล หรือการควบคุมการชนกันของข้อมูลไม่มีการเปลี่ยนแปลงไปจากอีเทอร์เน็ตปกติ เพียงแต่ลดเวลาการส่งข้อมูลของแต่ละบิตจาก 100 นาโนวินาที เป็น 10 นาโนวินาที จึงทำให้อัตราการส่งข้อมูลสูงขึ้น 10 เท่าจากเดิม
Gigabit Ethernet • Gigabit Ethernetเป็นเครือข่ายที่มีอัตราการส่งข้อมูลความเร็วสูงถึง 1000 Mbpsหรือ 1 Gbps โดยที่มีการปรับปรุงเปลี่ยนการเข้ารหัสข้อมูล และกระบวนการในการส่งบิตข้อมูล ผ่านทางสายใยแก้วนำแสง(Fiber Optic) แทนที่การใช้สายบิดเกลียวคู่ (Twisted Pair)
LAN แบบ IEEE 802.4 • แลนแบบโทเคนบัส ซึ่งถูกกำหนดเป็นมาตรฐาน IEEE 802.4 เป็นวิธีหนึ่งที่แก้ปัญหาซึ่ง ไม่สามารถรับประกันได้ว่าในขณะเวลาที่ต้องการส่งข้อมูลนั้น สถานีจะสามารถรับส่งข้อมูลได้หรือไม่ • แลนแบบโทเคนบัส นั้นจะมีสายเคเบิลที่เป็นตัวกลางซึ่งโหนดต่างๆต่อเข้านั้น มักจะมีลักษณะเป็นเส้นตรงแบบ Bus แต่ในการทำงานจริง โหนดเหล่านั้นจะประกอบเป็นวงแหวนทางตรรกะ (Logical Ring) • โหนดแต่ละตัวจะรู้ที่อยู่ (Address) ของสถานีที่อยู่ทางซ้าย และทางขวาของตัวเอง
LAN แบบ IEEE 802.4 • เมื่อวงแหวนถูกสร้างขึ้นแล้ว โทเคน(Token) ก็จะถูกส่งกันไปตามวงแหวนนี้ โนดที่ต้องการที่จะส่งข้อมูลต้องรอให้ตนเองมีสิทธิที่จะส่งข้อมูลโดยการที่มี Token อยู่ ดังนั้นจึงไม่เกิดการชนกันของสัญญาณ เนื่องจากในเวลาใดเวลาหนึ่งจะมีผู้ที่มีสิทธิส่งข้อมูล (มี Token อยู่) อยู่เพียงโหนดเดียวเท่านั้น
LAN แบบ IEEE 802.5 • แลน แบบ IEEE 802.5 หรือ แลนแบบ Token Ring • โนดแต่ละโหนด เชื่อมโยงเข้าด้วยกันเป็นวงแหวน ซึ่งแตกต่างจาก Ethernet (802.3) และ Token Bus (802.4) ที่ทำงานโดยสัญญาณข้อมูลที่ส่งลงไปในสายจะถูกแพร่ไปสายส่วนกลาง ซึ่งข้อมูลจะรับได้โดยทุกๆโนดที่เชื่อมต่ออยู่ • แต่สำหรับแลนแบบ 802.5 นั้นจะเป็นลักษณะที่เมื่อสัญญาณซึ่งเคลื่อนที่ไปในทิศทางเดียว ผ่านโนดต่างๆระหว่างผู้ส่งไปยังผู้รับ
LAN แบบ IEEE 802.5 • การทำงานของโทเคนริงนั้น ปกติจะมีโทเคนถูกส่งวิ่งไปรอบวงแหวนในทิศทางเดียว • เมื่อโนดใดต้องการส่งข้อมูล ก็จะจับเอาโทเคน ซึ่งผ่านเข้ามาแล้วส่งเฟรมข้อมูลลงไปในวงแหวน • เนื่องจากการไหลของข้อมูลเป็นไปในทิศทางเดียว ดังนั้นข้อมูลที่ถูกส่งออกไปเมื่อถึงโหนดปลายทาง ข้อมูลจะถูกตรวจสอบความถูกต้อง แล้วจะตอบกลับไปว่าได้รับข้อมูลเข้ามาแล้วถูกต้องหรือไม่ • จากนั้นก็ส่งข้อมูลรวมทั้งผลการตรวจสอบวนกลับยังโหนดผู้ส่งเพื่อให้ผู้ส่งทราบว่าการส่งข้อมูลเรียบร้อยหรือไม่ ถ้าโหนดที่มีโทเคนอยู่และทำการส่งข้อมูลออกไปเรียบร้อยแล้ว ก็จะทำการปล่อยโทเคนให้วิ่งในวงแหวนต่อไป โหนดอื่นที่ต้องการจะส่งข้อมูลต้องรอจนกระทั่งสามารถจับเอาโทเคนมาไว้ได้จึงจะสามารถเริ่มส่งข้อมูลออกไปได้
Token Ring A ส่งข้อมูล ถึง C
เครือข่ายไร้สาย (Wireless Networks) • การติดต่อสื่อสารแบบเครือข่ายไร้สายมีข้อได้เปรียบเหนือ การติดต่อสื่อสารผ่านเครือข่ายแบบใช้สายอยู่หลายประการ - อุปกรณ์สื่อสารจำเป็นที่จะต้องมีการเคลื่อนย้ายที่ได้- การติดต่อสื่อสารในสภาวะแวดล้อมที่ยากต่อการเดินสายส่งข้อมูล- ระบบเครือข่ายสื่อสารที่จำเป็นต้องสร้างขึ้นให้ใช้งานได้อย่างรวดเร็ว • ข้อด้อยของการติดต่อสื่อสารแบบเครือข่ายไร้สาย- สัญญาณง่ายต่อการถูกคลื่นรบกวน - ความปลอดภัยของข้อมูลมีน้อยกว่าเครือข่ายแบบใช้สาย- อัตราการส่งข้อมูลน้อยกว่าเครือข่ายแบบใช้สาย
เครือข่ายไร้สาย (Wireless Networks) • บลูทูธ (Bluetooth) ยังไม่ได้รับความนิยม เนื่องจากระยะการใช้ค่อนข้างจะสั้น ในปัจจุบันมีการนำมาใช้กับ Digital Pen ,PDA, Plam และ โทรศัพท์มือถือ เป็นต้นระยะการใช้งานไม่เกิน 30 ฟุต • Infrared Data Association (IrDA) เช่นกันยังไม่ได้รับความนิยม เนื่องจากวิธีการรับส่งสัญญาณจะต้องมองเห็นกัน (Line of Sight) แบบเดียวกันกับการใช้รีโมทคอนโทล ทำให้การติดตั้งอุปกรณ์ดังกล่าวค่อนข้างจะยุ่งยาก A Bluetooth network An Infrared network
เครือข่ายไร้สาย(ต่อ) • Wireless Applications Protocol (WAP) ทำให้ผู้ใช้โทรศัพท์มือถือ ใช้งานทางด้าน Internet ทั่วๆไปได้ เหมือนๆกับใช้งานผ่านทาง เครื่องคอมพิวเตอร์ • Radio Frequency Identification (RFID) เป็นระบบที่นำเอาคลื่นวิทยุมาเป็นคลื่นพาหะเพื่อใช้ในการสื่อสารข้อมูลระหว่างอุปกรณ์สองชนิดที่เรียกว่า แท็ก (Tag) และตัวอ่านข้อมูล (Reader หรือ Interrogator) ซึ่งเป็นการสื่อสารแบบไร้สาย (Wireless)โดยการนำข้อมูลที่ต้องการส่ง มาทำการมอดูเลต (Modulation) กับคลื่นวิทยุแล้วส่งออกผ่านทางสายอากาศที่อยู่ในตัวรับข้อมูล
IEEE 802.11 (Wi-Fi) • ไว-ฟาย (Wi-Fi : Wireless Fidelity) เป็นเทคโนโลยีที่นำมาใช้ในการสร้างระบบเครือข่ายคอมพิวเตอร์แบบไร้สายมาตั้งแต่ปี ค.ศ.1984 • ไว-ฟาย (Wi-Fi หรือ Wireless Fidelidy) หรือ (WECA หรือ Wireless Ethernet Compatibility Alliance) เป็นระบบเครือข่ายคอมพิวเตอร์ หรือ Mobile Computing แบบไร้สาย เทคโนโลยีที่นำมาใช้กับ ไว-ฟาย คือ IEEE 802.11b และ 802.11g(IEEE คือ Institute of Electrical Electronic Engineers) ที่ใช้สัญญาณคลื่นความถี่ 2,400 เมกะเฮิรตซ์(MHz) หรือ 2.4 GHzรับส่งสัญญาณหรือข้อมูลแบบ DSSS • Direct-Sequence Spread Spectrum เป็นการแบ่งส่งข้อมูลส่งไปแต่ละคลื่นความถี่ภายในช่วงระยะเวลาที่สั้นมาก ทำให้การรบกวนระหว่างกันน้อยมาก
IEEE 802.11 (Wi-Fi) • อย่างไรก็ตาม ถ้ามีการรบกวน ความเร็วในการรับส่งจะค่อยๆ ลดลงจาก 11 เมกะบิตต่อวินาทีลงไปร้อยละ 50 จนกระทั่งเหลือเพียงต่ำสุดคือหนึ่งเมกะบิต ซึ่งเป็นข้อดี คือ ระบบรับส่งไม่ล่ม มีความมั่นคง เชื่อถือ (Reliable) ได้ • ข้อดีของระบบ ไว-ฟาย คือรับส่งสัญญาณระหว่างคอมพิวเตอร์ในเครือข่ายได้เร็วถึง 11 เมกะบิตต่อวินาที มีความมั่นคงน่าเชื่อถือ ระยะการรับส่งกว้าง ถ้าในพื้นที่โล่งรับส่งได้ไกลถึง 300 ฟุต ถ้าในสถานที่ปิด 122 ฟุต นอกจากนั้นยังสามารถใช้ร่วมกับระบบเครือข่ายแบบมีสายอีเธอร์เน็ต และระบบอื่นๆ ที่ใช้มาตรฐาน 802.11 ได้ ซึ่งในปัจจุบันมีความเร็วถึง 54 เมกะบิตต่อวินาที
IEEE 802.11 (Wi-Fi) • ข้อด้อยของระบบ ไว-ฟาย คือ ทั้งระบบมีราคาค่อนข้างแพง อุปกรณ์ที่ทำหน้าที่เป็นจุดเชื่อมโยง (Access Point) ราคาเริ่มจากประมาณ 5,000 บาทถึง 25,000 บาท นอกจากนั้น จะต้องติดอุปกรณ์รับส่ง ถ้าเป็นระบบพีซีจะเป็นพีซีไอ (PCI) ถ้าเป็นระบบคอมพิวเตอร์แบบพกพา (Laptop PC) จะเป็นพีเอ็มซีไอเอ (PMCIA) มีราคาเท่าๆ กัน คือประมาณ 3,000 บาทต่อชิ้น และทุกเครื่องในเครือข่ายถ้าต้องการจะเชื่อมโยงกันแบบไร้สายต้องใช้การ์ด (Card) ดังกล่าว ปัจจุบันมีติดมากับเครื่อง Notebook • การติดตั้งค่อนข้างยาก • สัญญาณจะเร็วบ้างช้าบ้างไม่แน่นอน
IEEE 802.11 (Wi-Fi) Devices Access Point Wireless NIC cards
IEEE 802.11 (Wi-Fi) • 802.11bถือเป็นมาตรฐานไว-ไฟตัวแรก ที่ได้รับการพัฒนาขึ้นมา สามารถส่งข้อมูลได้ด้วยความเร็ว 11 เมกะบิตต่อวินาทีโดยใช้ช่วงความถี่ 2.4 กิกะเฮิรตซ์ ครอบคลุมพื้นที่ทำการในระยะ 50-100 เมตร • 802.11a ยังไม่สามารถใช้งาน 802.11a ที่มีความเร็วสูงถึง 54 เมกะบิตต่อวินาทีได้ เนื่องจากส่งสัญญาณในย่านความถี่ 5 กิกะเฮิรตซ์ ซึ่งไม่ได้รับอนุญาตจากกรมไปรษณีย์โทรเลข • 802.11gไม่มีปัญหาอะไร เพราะใช้ย่านความถี่เดียวกับ 802.11b แต่ต่างกันตรงที่เร็วกว่ากันถึง 5 เท่า