1 / 46

Chapter 4

Chapter 4. Matrices. 4.1 Intro to Matrices. Matrix: a rectangular array of variables or constants in horizontal rows and vertical columns, usually enclosed in brackets Element: a value in a matrix Dimensions: number of rows x number of columns Read “m by n”.

maille
Download Presentation

Chapter 4

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Chapter 4 Matrices

  2. 4.1 Intro to Matrices • Matrix: a rectangular array of variables or constants in horizontal rows and vertical columns, usually enclosed in brackets • Element: a value in a matrix • Dimensions: number of rows x number of columns • Read “m by n”

  3. State the dimensions of matrix G if G = • State the dimensions of matrix A if A =

  4. Types of Matrices • Row matrix: • A matrix with only one row ex: • Column matrix: • A matrix with only one column ex: • Square matrix: • A matrix with the same number of rows as columns • ex: • Zero matrix: • All elements are zero

  5. Solve an equation involving Matrices 1. =

  6. 2.

  7. 3. • Write a matrix for the prices of movie tickets for adults, children, and seniors. • What are the dimensions of the matrix?

  8. 4.2 Operations with matrices

  9. Matrices can be added and subtracted if, and only if, they have the same dimensions. • ex: + = • ex: =

  10. 1. Find A + B if A = and B =

  11. 2. Find A + B if A = and B =

  12. 3. Find B – A if A = and B =

  13. Scalar Multiplication • Scalar: a constant that you can multiply a matrix by • ex: =

  14. 4. Find 3A, if A =

  15. 5. If A = and B = , find 5A – 2B

  16. 4.3 Multiplying matrices

  17. You can multiply matrices if and only if: the number of columns in the first matrix is the same as the number of rows in the second matrix • Ex: A5 x3 and B3x4 = AB • If the matrices cannot be multiplied = product matrix is not defined 5 x 4

  18. Multiplying Matrices x = Step 1: x Step 2 : x Step 3 : x Step 4 : x

  19. Find RS if 1. R = and S =

  20. At a swimming meet 6 points are awarded for 1st place, 4 points for 2nd place, and 3 points for 3rd place. 2. The chart shows how many swimmers placed in each position through the meet for the four participating schools. Write a set of matrices to model the points earned. Which team won the meet?

  21. Commutative Property – Does it work for matrices? 3. Find each product if P = and S = a. PS b. SP

  22. Distributive Property – Does it work for matrices? 4. Find each product if A = B = and C = a. A (B + C) b. AB + AC

  23. 4.5 Determinants

  24. Determinant: A number associated with a square matrix • Second-Order Determinant • A value found by calculating the difference of the products of the two diagonals in a 2x2 matrix • = ad – bc

  25. Find the value of the determinant 1. 2.

  26. 3. 4.

  27. Third-Order Determinant • Determinant of a 3x3 matrix • Method 1: Expansion by Minors • = a - b + c • Method 2: Diagonals

  28. Find the determinant using expansion by minors 3.

  29. 4.6 Cramer’s rule

  30. Use the determinants to solve systems of equations • Ex: ax + by = e cx + dy = f x = and y = Write the answer as (x, y) x = and y =

  31. Solve the system of equations using Cramer’s rule 1. 5x + 4y = 28 3x – 2y = 8

  32. 2. 2x – 3y = 12 -6x + y = -20

  33. In voting for the colors of a new high school, blue & gold received 440 votes from 10th and 11th graders while red & black received 210 votes from the same grades. In the 10th grade, blue & gold received 72% of the total and Red & black received 28%. In the 11th grade, Blue & gold received 64% of the total and Red & Black received 36%. • Write a system of equations that represents the total number of votes for each pair of colors. • Find the total number of votes cast in 10th grade and in 11th grade.

  34. 4.7 Identity and Inverse Matrices

  35. Identity Matrix: • A square matrix that, when multiplied by another matrix equals the same matrix • Ex: or

  36. Inverse Matrices: • When the product of two matrices with the same dimensions is the identity matrix

  37. Determine whether each pair of matrices are inverses of each other. 1. X = and Y =

  38. 2. C = and D =

  39. To find the inverse of a matrix • Find the determinant to see if it has an inverse • If the determinant is zero, it cannot have an inverse • If the inverse exists it =

  40. Find the inverse for the given matrix 3. R =

  41. 4. A =

  42. 4.8 Using Matrices to solve systems of equations

  43. Step 1: Rewrite the system of equations as a matrix equation • Ex: 5x + 7y = 11 3x + 8y = 18 • Step 2: find the inverse matrix • = =

  44. Step 3: Multiply each side of the matrix equation by the inverse matrix • = • Step 4: Write the solution as an ordered pair :

  45. Solve the system using matrices 1. 5x + 3y = 13 4x + 7y = -8

  46. 2. 6a – 9b = -18 8a – 12b = 24

More Related