1 / 30

The Viewing Pipeline ( Chapter 4)

The Viewing Pipeline ( Chapter 4). Overview. OpenGL viewing pipeline : Modelview matrix Projection matrix Parallel and perspective projections Viewport matrix. OpenGL Window-to-Viewport Transformation. OpenGL will clip all primitives that lie outside the world window

makoto
Download Presentation

The Viewing Pipeline ( Chapter 4)

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. The Viewing Pipeline (Chapter 4)

  2. Overview • OpenGLviewing pipeline: • Modelviewmatrix • Projectionmatrix • Parallel and perspective projections • Viewportmatrix

  3. OpenGL Window-to-Viewport Transformation • OpenGLwill clipall primitives that lie outside theworldwindow • Primitives are displayed in aviewportof thescreen window • The window-to-viewporttransformation transformsprimitives fromworld coordinatesto viewport coordinates

  4. OpenGL Viewing Pipeline • Thewindow-to-viewporttransformation consists of a number of parts: theviewingpipeline: glTranslate*/glRotate*/glScale*glLoadMatrix*/glMultMatrix*gluLookAt gluOrtho2DglOrthogluPerspectiveglFrustum glViewport

  5. The Modelview Matrix • A 3-D to 3-D transformation • Combines effect ofmodellingtransformations andviewpoint • Modelling transformations: • What transformations are applied to each primitive to construct the scene? • Viewing Trasformations: • Where are we viewing the scene from?

  6. The Modelview Matrix • First we need to tellOpenGLthat we want tospecify themodelview matrix: • glMatrixMode(GL_MODELVIEW) • Then we can manipulate the currentmodelviewmatrixusing: • glTranslate* • glRotate* • glScale* • glLoadMatrix* • glMultMatrix* • gluLookAt

  7. The Modelview Matrix • gluLookAt(x0, y0, z0, xref, yref, zref, Vx, Vy, Vz) • Specifies the position/direction/orientation of the ‘camera’ • Position of camera is(x0, y0, z0)in world coordinates • Camera points towards(xref, yref, zref)in worldcoordinates • The vector(Vx, Vy, Vz)specfies the ‘up’ direction forthe camera

  8. The Modelview Matrix - Example glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(8,8,8,0,0,0,0,0,1); glutSolidTorus(1, 2.0, 10, 20);

  9. The Modelview Matrix - Example glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslated(300.0, 200.0, 0.0); // translate all primitives to this point glRecti(-30,-30,30,30); // 60 by 60 square at origin glTranslatef(100,0,0); // this square will be translated glRotatef(45,0,0,1); // and rotated glRecti(-30,-30,30,30); // 60 by 60 square at origin glFlush(); // send all output to display

  10. The Modelview Matrix Stack - Example glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glTranslatef(200,200,0); // translate all rectangles … glPushMatrix(); // save rotation glRotatef(45,0,0,1); //rotate this one glRecti(0,0,50,50); // draw rectangle glPopMatrix(); // restore rotation glPushMatrix(); // save rotation glTranslatef(100,0,0); // translate this one glRotatef(70,0,0,1); // and also rotate it glRecti(0,0,50,50); // draw rectangle glPopMatrix(); // restore rotation glFlush(); // send all output to display

  11. The OpenGL Matrix Stacks • For each matrix in theviewing pipeline,OpenGLmaintains amatrix stack • Thecurrent matrixis the one on top of the stack • Manipulating the matrix stack: • glPushMatrix() • Current matrix copied to second position on stack • All other matrices on stack move down one place • glPopMatrix() • Current matrix is destroyed • All other matrices move up one position on stack

  12. Image plane Image plane Projection Matrices • Projection matricestransform3-Dcoordinatesonto a2-D image plane • 2 basic types of projection: Perspective projection Parallel projection Projection lines are parallel Projection lines converge to a point

  13. Orthographic (or orthogonal) projection Oblique projection Image plane Image plane Projection lines are parallel and perpendicular to image plane Projection lines parallel but not perpendicular Parallel Projections • Objects further from viewer do not appear smaller • Common in CAD applications • Parallel projectionscan be either:

  14. Centre of projection Image plane Perspective Projections • Projection linesconverge at thecentre of projection • Objects that are further away appear smaller • Perspective projectionscan be specified by: • Centre of projection • Camera direction(look vector) • Camera orientation(‘up’ vector) • Height/width of image plane(viewing angles)

  15. Perspective Projections • View angledetermines thedegree of zoom • Like a cameraman changing the camera lens • Narrow angle: high zoom,little depth effect • Wide angle: low zoom,perspective distortion • For a perspective projection we typically have twoviewangles: • Width angle • Height angle

  16. Up vector Look vector Position Perspective Projections • Look vectordetermines the direction thecamera is pointing • Can be any vector in 3-D space • Up vectordetermines the orientation of the camera • E.g. are we holding the camera horizontally/vertically/in between? • Position specified in aright-handedcoordinate system, e.g.

  17. Projections - Clipping Planes • Most graphics packages will define near and farclippingplanes • Volume of space between near and farclipping planesdefines what the camera can ‘see’ • Objects outside of clipping planes will not get drawn • Intersecting objectswill beclipped

  18. Projections – View Volumes • Theview volumeof a camera is a specification of a bounded space that the camera can ‘see’ • View volumecan be specified by: • Camera position, look vector, up vector, image plane aspect ratio, height angle, clipping planes (near/far)

  19. Projections – Perspective Projection View Volume • Perspective projection view volume forms afrustum

  20. Projections – Orthogonal Projection View Volume • Orthographic projection view volume forms acuboid

  21. The Projection Matrix • A 3-D to 2-D transformation: • Orthographicprojection • Perspectiveprojection • InOpenGL: • Thecentre of projectionis theoriginof theviewingcoordinate system(i.e. after themodelviewmatrix) • The view direction (look vector) is the negative z-axis • The ‘up’(‘up’ vector) is the positive y-axis • Specifying theprojection matrix: • gluOrtho2D • glOrtho • gluPerspective • glFrustum

  22. The Projection Matrix • gluOrtho2D (xwmin, xwmax, ywmin, ywmax) • Orthographic projection • Intended for use with 2-D graphics • Defines aworld windowfor clippingthat will be mapped to the specifiedviewport • No nearandfar clipping planes

  23. The Projection Matrix • glOrtho (xwmin, xwmax, ywmin, ywmax, dnear, dfar) • Orthographic projection • Intended for use with 3-D graphics • Defines aworld windowfor clippingthat will be mapped to the specifiedviewport • Can also specifynear andfar clipping planes: • dnearanddfarare the distances of the clipping planes fromthe viewing coordinate origin along the z-axis • Near clipping planeis theimage plane

  24. theta = height angle The Projection Matrix • gluPerspective (theta, aspect, dnear, dfar) • Perspective projection • thetais theheight anglein degrees • aspect is the ratio of the width to the height of theimage plane (theaspect ratio) • Centre of projectionis the origin of the viewingcoordinate system • dnear, dfarare distances of clipping planes from centre of projection along z-axis • Image planeis the near clipping plane

  25. Height angle The Projection Matrix • glFrustum (xwmin, xwmax, ywmin, ywmax, dnear, dfar) • Perspective projection • Corners ofnear clipping planehave the followingcoordinates in theviewing coordinate system: • (xwmin, ywmin, -dnear) • (xwmin, ywmax, -dnear) • (xwmax, ywmin, -dnear) • (xwmax, ywmax, -dnear) • Centre of projectionis theorigin of the viewing coordinate system • Image planeis the nearclipping plane

  26. The Projection Matrix - Examples • gluOrtho2Dexample: • All primitives with(x,y)coordinates between(0,0)and(640,480)will be displayed • glOrthoexample: • Defines a24x24x30view volumewith theimageplaneat the origin: glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluOrtho2D(0.0, 640.0, 0.0, 480.0); glMatrixMode(GL_PROJECTION); glLoadIdentity(); glOrtho(-12, 12, -12, 12, 0, 30); // left, right, bottom, top, near, far

  27. The Viewport Matrix • Determines theregionof thescreenwindowto be used for drawing • Specifying theviewport matrix: • glViewport(xPos, yPos, xSize, ySize) • Viewport has bottom-left corner at(xPos,yPos),and has a size in pixels of(xSize,ySize)

  28. The Viewport Matrix - Example void drawObjects() { glMatrixMode(GL_MODELVIEW); glLoadIdentity(); glutWireTorus(1, 2.0, 10, 20); glTranslated(7.0,0.0,0.0); glutWireTeapot(3); } /* GLUT callback Handlers */ void display() { glClear(GL_COLOR_BUFFER_BIT); glViewport(0, 0, 320, 240); drawObjects(); glViewport(320, 0, 320, 240); drawObjects(); glViewport(0, 240, 320, 240); drawObjects(); glViewport(320, 240, 320, 240); drawObjects(); glFlush(); // send all output to the display }

  29. Specifying the Screen Window • Thescreen windowis the window onyour monitor thatOpenGLuses todraw primitives • Sizeandpositionofscreen windowspecified by: • glutInitWindowSize(width,height) • Width and height of window in pixels • glutInitWindowPosition(x,y) • Position (x,y) in pixels from the top-left of the screen

  30. Summary • TheOpenGL viewing pipeline: • A series of matrix transformations that all primitivesundergo • Modelview matrix: combines modelling and viewingtransforms • Projection matrix: projects 3-D viewing coordinatesonto image plane • Viewport matrix: selects the part of the display window to use for drawing

More Related