E N D
8. TELAR DE JACQUARD
10. MAQUINA DIFERENCIAL DE BABBAGE
11. MOTOR ANALITICO DE BABBAGE
14. The Atanasoff–Berry Computer (ABC) was the world's first electronic digital computer[1], but it was not programmable.[2] Conceived in 1937, the machine was designed only to solve systems of linear equations. It was successfully tested in 1942. However, its intermediate result storage mechanism, a paper card writer/reader, was unreliable, and when Atanasoff left Iowa State University for World War II assignments, work on the machine was discontinued.[3] The ABC pioneered important elements of modern computing, including binary arithmetic and electronic switching elements,[4] but its special-purpose nature and lack of a changeable, stored program distinguish it from modern computers.The Atanasoff–Berry Computer (ABC) was the world's first electronic digital computer[1], but it was not programmable.[2] Conceived in 1937, the machine was designed only to solve systems of linear equations. It was successfully tested in 1942. However, its intermediate result storage mechanism, a paper card writer/reader, was unreliable, and when Atanasoff left Iowa State University for World War II assignments, work on the machine was discontinued.[3] The ABC pioneered important elements of modern computing, including binary arithmetic and electronic switching elements,[4] but its special-purpose nature and lack of a changeable, stored program distinguish it from modern computers.
15. Konrad Zuse (German pronunciation: ['k?n?at 'tsu?z?]; June 22, 1910 Berlin - December 18, 1995 Hünfeld) was a German civil engineer and computer pioneer. His greatest achievement was the world's first functional program-controlled Turing-complete computer, the Z3, in 1941 (the program was stored on a punched tape). He received the Werner-von-Siemens-Ring in 1964 for the Z3.[1]
Zuse also designed the first high-level programming language, Plankalkül, first published in 1948, although this was a theoretical contribution, since the language was not implemented in his lifetime and did not directly influence early languages. One of the inventors of ALGOL (Rutishauser) wrote: "The very first attempt to devise an algorithmic language was undertaken in 1948 by K. Zuse. His notation was quite general, but the proposal never attained the consideration it deserved."Konrad Zuse (German pronunciation: ['k?n?at 'tsu?z?]; June 22, 1910 Berlin - December 18, 1995 Hünfeld) was a German civil engineer and computer pioneer. His greatest achievement was the world's first functional program-controlled Turing-complete computer, the Z3, in 1941 (the program was stored on a punched tape). He received the Werner-von-Siemens-Ring in 1964 for the Z3.[1]
Zuse also designed the first high-level programming language, Plankalkül, first published in 1948, although this was a theoretical contribution, since the language was not implemented in his lifetime and did not directly influence early languages. One of the inventors of ALGOL (Rutishauser) wrote: "The very first attempt to devise an algorithmic language was undertaken in 1948 by K. Zuse. His notation was quite general, but the proposal never attained the consideration it deserved."
17. MARK I
18. ENIAC (pronounced ['?niæk]), short for Electronic Numerical Integrator And Computer,[1][2] was the first general-purpose electronic computer. It was a Turing-complete, digital computer capable of being reprogrammed to solve a full range of computing problems.[3] ENIAC was designed to calculate artillery firing tables for the U.S. Army's Ballistic Research Laboratory, but its first use was in calculations for the hydrogen bomb.[4][5]
When ENIAC was announced in 1946 it was heralded in the press as a "Giant Brain". It boasted speeds one thousand times faster than electro-mechanical machines, a leap in computing power that no single machine has since matched. This mathematical power, coupled with general-purpose programmability, excited scientists and industrialists. The inventors promoted the spread of these new ideas by teaching a series of lectures on computer architecture.
The ENIAC's design and construction were financed by the United States Army during World War II. The construction contract was signed on June 5, 1943, and work on the computer was begun in secret by the University of Pennsylvania's Moore School of Electrical Engineering starting the following month under the code name "Project PX". The completed machine was unveiled on February 14, 1946 at the University of Pennsylvania, having cost almost $500,000. It was formally accepted by the U.S. Army Ordnance Corps in July 1946. ENIAC was shut down on November 9, 1946 for a refurbishment and a memory upgrade, and was transferred to Aberdeen Proving Ground, Maryland in 1947. There, on July 29, 1947, it was turned on and was in continuous operation until 11:45 p.m. on October 2, 1955.
ENIAC was conceived and designed by John Mauchly and J. Presper Eckert of the University of Pennsylvania.[6] The team of design engineers assisting the development included Robert F. Shaw (function tables), Chuan Chu (divider/square-rooter), Kite Sharpless (master programmer), Arthur Burks (multiplier), Harry Huskey (reader/printer), Jack Davis (accumulators) and Iredell Eachus Jr.[7]ENIAC (pronounced ['?niæk]), short for Electronic Numerical Integrator And Computer,[1][2] was the first general-purpose electronic computer. It was a Turing-complete, digital computer capable of being reprogrammed to solve a full range of computing problems.[3] ENIAC was designed to calculate artillery firing tables for the U.S. Army's Ballistic Research Laboratory, but its first use was in calculations for the hydrogen bomb.[4][5]
When ENIAC was announced in 1946 it was heralded in the press as a "Giant Brain". It boasted speeds one thousand times faster than electro-mechanical machines, a leap in computing power that no single machine has since matched. This mathematical power, coupled with general-purpose programmability, excited scientists and industrialists. The inventors promoted the spread of these new ideas by teaching a series of lectures on computer architecture.
The ENIAC's design and construction were financed by the United States Army during World War II. The construction contract was signed on June 5, 1943, and work on the computer was begun in secret by the University of Pennsylvania's Moore School of Electrical Engineering starting the following month under the code name "Project PX". The completed machine was unveiled on February 14, 1946 at the University of Pennsylvania, having cost almost $500,000. It was formally accepted by the U.S. Army Ordnance Corps in July 1946. ENIAC was shut down on November 9, 1946 for a refurbishment and a memory upgrade, and was transferred to Aberdeen Proving Ground, Maryland in 1947. There, on July 29, 1947, it was turned on and was in continuous operation until 11:45 p.m. on October 2, 1955.
ENIAC was conceived and designed by John Mauchly and J. Presper Eckert of the University of Pennsylvania.[6] The team of design engineers assisting the development included Robert F. Shaw (function tables), Chuan Chu (divider/square-rooter), Kite Sharpless (master programmer), Arthur Burks (multiplier), Harry Huskey (reader/printer), Jack Davis (accumulators) and Iredell Eachus Jr.[7]
19. Electronic Delay Storage Automatic Calculator (EDSAC) was an early British computer. The machine, having been inspired by John von Neumann's seminal First Draft of a Report on the EDVAC, was constructed by Maurice Wilkes and his team at the University of Cambridge Mathematical Laboratory in England. EDSAC was the first practical stored-program electronic computer.[1]
Later the project was supported by J. Lyons & Co. Ltd., a British firm, who were rewarded with the first commercially applied computer, LEO I, based on the EDSAC design. EDSAC ran its first programs on 6 May 1949, when it calculated a table of squares[2] and a list of prime numbers.Electronic Delay Storage Automatic Calculator (EDSAC) was an early British computer. The machine, having been inspired by John von Neumann's seminal First Draft of a Report on the EDVAC, was constructed by Maurice Wilkes and his team at the University of Cambridge Mathematical Laboratory in England. EDSAC was the first practical stored-program electronic computer.[1]
Later the project was supported by J. Lyons & Co. Ltd., a British firm, who were rewarded with the first commercially applied computer, LEO I, based on the EDSAC design. EDSAC ran its first programs on 6 May 1949, when it calculated a table of squares[2] and a list of prime numbers.
23. DEFINICIÓN Se denomina “Generación de computadoras” a cualquiera de los períodos en que se divide la historia de las computadoras
24. LAS 5 GENERACIONES HASTA LA ACTUALIDAD 1ª Generación: Las computadoras estaban construidas con electrónica de válvulas y se programaban en lenguaje de máquina.
2ª generación: Ya no son de válvulas de vacío, sino con transistores, son más pequeñas y consumen menos electricidad que las anteriores.
3ª generación: Son las computadoras que comienzan a utilizar circuitos integrados.
4ª generación: Se caracteriza por la integración a gran escala de circuitos integrados y transistores (más circuitos por unidad de espacio).
5ª generación: Las computadoras de quinta generación son computadoras basados en inteligencia artificial.
25. 1ª GENERACIÓN (1946-1959) Se caracteriza por el rasgo más prominente de la ENIAC (Computador e Integrador Numérico Electrónico): tubos de vacío (bulbos) y programación basada en el lenguaje de máquina.
Durante la década de 1950 se construyeron varias computadoras notables, cada una contribuyó con avances significativos: uso de la aritmética binaria, acceso aleatorio y el concepto de programas almacenados.
La primera computadora digital electrónica de la historia Era capaz de efectuar cinco mil sumas por segundo. Fue hecha por un equipo de ingenieros y científicos encabezados por los doctores John W. Mauchly y J. Prester Eckert en la universidad de Pennsylvania, en los Estados Unidos.
26. 2ª GENERACIÓN (1959-1964) Estas computadoras comenzaron a utilizar transistores. Se comunicaban mediante lenguajes de alto nivel.
El invento de los transistores significó un gran avance, ya que permitió la construcción de computadoras más poderosas, más confiables, y menos costosas. Además ocupaban menos espacio y producían menos calor que las computadoras que operaban a bases de tubos de vacío.
Maurice Wilkes inventa la microprogramación, que simplifica mucho el desarrollo de las CPU.
27. 3ª GENERACIÓN (1964-1980) A mediados de los años 60 se produjo, la invención de Jack St. Claire Kilby y Robert Noyce del circuito integrado o microchip, después llevó a la invención de Ted Hoff del microprocesador, en Intel.
A partir de finales de 1960, empezaron a empaquetarse varios transistores diminutos y otros componentes electrónicos en una sola pastilla o encapsulado. Naturalmente, con estas pastillas (circuitos integrados) era mucho más fácil montar aparatos complicados: receptores de radio o televisión y computadoras.
Estas computadoras de tercera generación sustituyeron totalmente a los de segunda, introduciendo una forma de programar que aún se mantiene en las grandes computadoras actuales.
Los microprocesadores son los circuitos integrados más avanzados.
En la foto. Chips de memoria con una ventana de cristal de cuarzo que posibilita su borrado mediante luz ultravioleta. Los microprocesadores son los circuitos integrados más avanzados.
En la foto. Chips de memoria con una ventana de cristal de cuarzo que posibilita su borrado mediante luz ultravioleta.
28. 4ª GENERACIÓN (1980-1984) Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de muchos más componentes en un Chip: producto de la micro miniaturización de los circuitos electrónicos.
El tamaño reducido del microprocesador de chips hizo posible la creación de las computadoras personales.
Las microcomputadoras o Computadoras Personales (PC´s) tuvieron su origen con la creación de los microprocesadores.
Las PC´s son computadoras para uso personal y relativamente son baratas y actualmente se encuentran en las oficinas, escuelas y hogares.
Hicieron su gran debut las microcomputadoras.
29. 5ª GENERACIÓN Fue un proyecto ambicioso lanzado por Japón a finales de los 70. Su objetivo era el desarrollo de una clase de computadoras que utilizarían técnicas de inteligencia artificial al nivel del lenguaje de máquina y serían capaces de resolver problemas complejos, como la traducción automática de una lengua natural a otra.
El proyecto duró diez años, los campos principales para la investigación de este proyecto inicialmente eran:
-Tecnologías para el proceso del conocimiento.
-Tecnologías para procesar bases de datos y bases de
conocimiento masivo.
-Sitios de trabajo del alto rendimiento.
-Informáticas funcionales distribuidas.
-Supercomputadoras para el cálculo científico.
32. VALVULAS AL VACIO
33. TRANSISTOR
34. CHIPS
35. COMPARACION DE TAMAÑOSVALVULAS AL VACIO - TRANSISTORES -CIRCUITOS L.S.I.
36. CIRCUITOS V.L.S.I.
37. CIRCUITOS V.L.S.I.
38. SUPERCOMPUTADORA CRAY
39. MAINFRAME