1 / 84

Haplotype analysis

Shaun Purcell shaun@pngu.mgh.harvard.edu MGH, Boston. Haplotype analysis. A a M aM m am This individual has aa and Mm genotypes and am and aM haplotypes . Haplotypes. A a M AM m Am This individual has AA and Mm genotypes

malana
Download Presentation

Haplotype analysis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Shaun Purcell shaun@pngu.mgh.harvard.edu MGH, Boston Haplotype analysis

  2. A a M aM m am This individual has aa and Mm genotypes and am and aM haplotypes Haplotypes

  3. A a MAM mAm This individual has AA and Mm genotypes and AM and Am haplotypes

  4. A a MAM m am This individual has Aa and Mm genotype and AM and am haplotypes…

  5. A a MAM m am This individual has Aa and Mm genotype and AM and am haplotypes… but given only genotype data, consistent with Am/aM as well as AM/am

  6. Haplotype analysis Estimate haplotypes from genotypes Associate haplotypes with trait Haplotype Freq. Odds Ratio AAGG 40% 1.00* AAGT 30% 2.21 CGCG 25% 1.07 AGCT 5% 0.92 * baseline, fixed to 1.00

  7. Measuring haplotypes Expectation – Maximisation algorithm Applicable in situations where there are more categories than can be distinguished i.e. ‘incomplete data problems’ Complete data = ( Observed data , Missing data ) Haplotype data = ( Genotype data , Phase data )

  8. Measuring haplotypes GenotypesHaplotypes A/AB/bC/cABC / Abc or Phases ABc / AbC

  9. E-M algorithm 1. Guess haplotype frequencies 2. (E) Use those frequencies to replace ambiguous genotypes with fractional haplotype counts 3. (M) Estimate frequency of each haplotype by counting 4. Repeat (2) and (3) until convergence

  10. Dataset to be phased 4 individuals genotyped for 2 diallelic markers ID1 A/A B/B ID2 A/a b/b ID3 A/a B/b ID4 a/a b/b

  11. Dataset to be phased 4 individuals genotyped for 2 diallelic markers ID1 A/A B/B AB / AB ID2 A/a b/b Ab / ab ID3 A/a B/b AB / ab ? Ab / aB ID4 a/a b/b ab / ab

  12. E-step Replace ambiguous A/a B/b genotype with : AB / ab : Ab / aB :

  13. E-step PAB = 0.25 PaB = 0.25 PAb = 0.25 Pab = 0.25 Replace ambiguous A/a B/b genotype with : AB / ab : 2 × PAB × Pab Ab / aB : 2 × PAb × PaB

  14. E-step PAB = 0.25 PaB = 0.25 PAb = 0.25 Pab = 0.25 = 0.125/(0.125+0.125) = 0.50 = 0.125/(0.125+0.125) = 0.50 Replace ambiguous A/a B/b genotype with : AB / ab : 2 × PAB × Pab = 2 × 0.25× 0.25 = 0.125 Ab / aB : 2 × PAb × PaB = 2 × 0.25× 0.25 = 0.125

  15. E-step Incomplete dataComplete dataCount A/A B/B AB / AB 1.00 A/a b/b Ab / ab 1.00 A/a B/b AB / ab 0.50 Ab / aB 0.50 a/a b/b ab / ab 1.00

  16. M-step Counting AB haplotype= 2 × 1 + 1 × 0.5 = 2.5 Incomplete dataComplete dataCount A/A B/B AB / AB 1.00 A/a b/b Ab / ab 1.00 A/a B/b AB / ab 0.50 Ab / aB 0.50 a/a b/b ab / ab 1.00

  17. M-step Counting aB haplotype= 1 × 0.5 = 0.5 Incomplete dataComplete dataCount A/A B/B AB / AB 1.00 A/a b/b Ab / ab 1.00 A/a B/b AB / ab 0.50 Ab / aB 0.50 a/a b/b ab / ab 1.00

  18. M-step Counting Ab haplotype= 1 × 1 + 1 × 0.5 = 1.5 Incomplete dataComplete dataCount A/A B/B AB / AB 1.00 A/a b/b Ab / ab 1.00 A/a B/b AB / ab 0.50 Ab / aB 0.50 a/a b/b ab / ab 1.00

  19. M-step Counting ab haplotype= 1 × 1 + 1 × 0.5 + 2 × 1 = 3.5 Incomplete dataComplete dataCount A/A B/B AB / AB 1.00 A/a b/b Ab / ab 1.00 A/a B/b AB / ab 0.50 Ab / aB 0.50 a/a b/b ab / ab 1.00

  20. M-step Haplotype counts, frequencies from complete data Count Freq AB 2.5 0.3125 aB 0.5 0.0625 Ab 1.5 0.1875 ab 3.5 0.4375 Sum 8.0 1.0000

  21. back to the E-step…. PAB = 0.25 PaB = 0.25 PAb = 0.25 Pab = 0.25 PAB = 0.3125 PaB = 0.0625 PAb = 0.1875 Pab = 0.4375 are now replaced with the updated estimates

  22. back to the E-step…. PAB = 0.25 PaB = 0.25 PAb = 0.25 Pab = 0.25 PAB = 0.3125 PaB = 0.0625 PAb = 0.1875 Pab = 0.4375 are now replaced with the updated estimates = 0.273/(0.273+0.023) = 0.92 = 0.023/(0.273+0.023) = 0.08 Replace ambiguous A/a B/b genotype with : AB / ab : 2 × PAB × Pab = 2 × 0.3125× 0.4375 = 0.273 Ab / aB : 2 × PAb × PaB = 2 × 0.1875× 0.0625 = 0.023

  23. back to the M-step… Counting AB haplotype= 2 × 1 + 1 × 0.92 = 2.92 Incomplete dataComplete dataCount A/A B/B AB / AB 1.00 A/a b/b Ab / ab 1.00 A/a B/b AB / ab 0.92 Ab / aB 0.08 a/a b/b ab / ab 1.00

  24. back to the M-step… Haplotype counts, frequencies from complete data Count Freq AA 2.92 0.365 aB 0.08 0.010 Ab 1.08 0.135 ab 3.92 0.490 Sum 8.0 1.0000

  25. and back, again, to the E-step… and back, again, to the M-step… and back, again, to the E-step… and back, again, to the M-step… and back, again, to the E-step… and back, again, to the M-step… ……

  26. Haplotype frequency estimates AB aB Ab ab i0 0.250 0.250 0.250 0.250 i1 0.315 0.0625 0.1875 0.4375. i2 0.365 0.010 0.135 0.490 …… … … … iN 0.375 0.000 0.125 0.500

  27. Posterior probabilities Bayes Rule

  28. Posterior Probabilities Example: Genotype AaBb Haplotype frequencies AB aB Ab ab 0.375 0 0.125 0.5

  29. Posterior probabilities GenotypePhase P(H|G) A/A B/B AB / AB 1.00 A/a b/b Ab / ab 1.00 A/a B/b AB / ab1.00 Ab / aB0.00 a/a b/b ab / ab 1.00

  30. Missing genotype data A/A 0/0 c/c consistent with 3 phases Phase P(H|G) ABc / ABc ( PABc× PABc ) / S ABc / Abc ( 2 × PABc× PAbc ) / S Abc / Abc ( PAbc× PAbc ) / S where S = PABc× PABc + 2 × PABc× PAbc + PAbc× PAbc

  31. Using parental genotypes Can often help to resolve phase A/a B/b C/c

  32. Using parental genotypes Can often help to resolve phase A/A B/B C/c a/a b/b c/c A/a B/b C/c

  33. Using parental genotypes Can often help to resolve phase A/A B/B C/c a/a b/b c/c A/a B/b C/c ABC / abc

  34. Using parental genotypes Can often help to resolve phase A/A B/B C/c a/a b/b c/c A/a B/b C/c … but not always A/a B/b C/c A/a B/b c/c A/a B/b C/c ABC / abc

  35. A (slightly) less trivial example ? ? 211 /212 ? ? 122 / 122 112 / 212 211 / 211 ? 222/ 222 1 1 1 1 2 1 2 2 1 2 1 1 1 2 3 2 2 1 1 1 2 4 1 2 1 2 1 1 5 1 2 1 1 1 2 6 1 1 2 2 2 2 7 1 2 1 1 2 2 8 2 2 1 1 1 1 9 1 2 1 2 2 2 10 2 2 2 2 2 2

  36. haplotype frequencies Estimated haplotype frequency E-M iteration

  37. log-likelihood

  38. Haplotype frequencies H P(H) 211 0.299996 112 0.235391 222 0.135402 122 0.114604 212 0.114602 121 0.099994 111 0.000010 221 0.000000

  39. ID chr Hap P(H|G) 1 1 111 0.0001234 1 2 122 0.0001234 1 1 112 0.9998766 1 2 121 0.9998766 2 1 111 0.0000411 2 2 212 0.0000411 2 1 112 0.9999589 2 2 211 0.9999589 3 1 211 1.0000000 3 2 212 1.0000000 4 1 111 0.0000000 4 2 221 0.0000000 4 1 121 1.0000000 4 2 211 1.0000000 5 1 111 0.0000411 5 2 212 0.0000411 5 1 112 0.9999589 5 2 211 0.9999589 ID chr Hap P(H|G) 6 1 122 1.0000000 6 2 122 1.0000000 7 1 112 1.0000000 7 2 212 1.0000000 8 1 211 1.0000000 8 2 211 1.0000000 9 1 112 0.7080343 9 2 222 0.7080343 9 1 122 0.2919657 9 2 212 0.2919657 10 1 222 1.0000000 10 2 222 1.0000000

  40. But it's not always this easy... For m SNPs there are… 2m possible haplotypes 2m-1 (2m+1) possible haplotype pairs For m = 10 then 1,024 possible haplotypes 524, 800 possible haplotype pairs

  41. Haplotype analysis software Many available packages: EH+/Genecouting (Zhao) HaploView (Barrett) PHASE (Stephens) FBAT/HBAT/PBAT (Xu et al, Lange) haplo.score (Schaid) eHap (Roeder) / ET-TDT (Seltman) UNPHASED (Dudbridge) PLINK (Purcell et al) whap (Purcell & Sham)

  42. whap Numerous recent methods using GLM approach Schaid et al (02) AJHG Zaykin et al (02) Hum Hered Quantitative and qualitative traits Mixture of regressions framework Between/within family model Model either L(X|G) or L(G|X) Covariates and moderators Flexible specification of nested submodels

  43. Two main types of test Haplotype-specific tests H tests each with 1 df compare each haplotype versus all others correction for multiple tests not built-in Omnibus test single test with H-1 df compare each haplotype against an (arbitrary) reference haplotype built-in correction for multiple tests ACCGAGACTA b1 versus ACCACTGTGC GCTGAGGCGC 0 ATTGAGATGA ACCGAGACTA 0 ACCACTGTGC b1 GCTGAGGCGC b2 ATTGAGATGA b3

  44. Covering large genomic areas Exhaustive haplotype approach (ETDT) Sliding window of fixed size (whap) Haplotype-specific block-based tests (HaploView) Specific small multimarker predictors of known, common but otherwise untagged variants (HaploView, plink)

  45. File formats Similar to QTDT/Merlin input format Example command lines For full details: http://pngu.mgh.harvard.edu/purcell/whap/ data.dat data.map data.ped 14 rs000001 0 123232 14 rs000002 0 123887 1 1 0 0 1 -9 1 2 A A 1 2 0 0 2 -9 2 2 C C 1 3 1 2 1 -0.23 1 2 A C T quant1 M rs000001 M rs000002 whap --file data --alt 5,6,7 --null 5,7 whap --file data --alt 1,2,3 --at 5 --sec --perm 5000 whap --file data --alt 1,2 --window --cond --prev 0.02 --model w --wperm 5000

  46. Omnibus test whap --file data --alt 5,6,7,8,9,10,11 --at 2 300 individuals w/out parents. 0 individuals with parents. 275 of 300 individuals are informative Hap Freq Alt(B) Alt(W) Null(B) Null(W) --- ----- ------ ------ ------- ------- 2122221 0.313 0.000 0.000 [1] 0.000 0.000 [1] 2112121 0.169 -0.249 -0.249 [2] 0.000 0.000 [1] 2221211 0.122 -0.417 -0.417 [3] 0.000 0.000 [1] 2212222 0.115 -0.419 -0.419 [4] 0.000 0.000 [1] 2122222 0.112 0.044 0.044 [5] 0.000 0.000 [1] 1112121 0.099 -0.213 -0.213 [6] 0.000 0.000 [1] 2222221 0.041 0.115 0.115 [7] 0.000 0.000 [1] 2212221 0.029 -0.662 -0.662 [8] 0.000 0.000 [1] --- ----- ------ ------- 766.078 787.673 Proportion of haplotypes covered = 0.955 LRT = 21.595 df = 7 p = 0.00298

  47. Haplotype-specific tests whap --file data --alt 1,2,3 --at 2 --hs Haplotype Freq B & W coeffs Chi-sq p 1 AGC 0.525 -0.472 -0.472 8.546 0.00346 2 CGC 0.220 0.107 0.107 0.428 0.513 3 CGA 0.180 -0.088 -0.088 0.265 0.606 4 ATA 0.075 0.116 0.116 0.381 0.537

  48. Practical sessions Analysis of simulated data Detecting haplotype association using whap Fitting nested model to explore the association using whap

  49. Practical: Simulated data dataACGT.ped 1_A 1 0 0 1 2 A A C C C A G G C C 2_A 1 0 0 1 2 A A A C C A T G A C ... 1_B 1 0 0 1 1 C C C C C C G G A A ... dataACGT.dat dataACGT.map A disease M snp1 M snp2 M snp3 M snp4 M snp5 1 snp1 0 1 1 snp2 0 2 1 snp3 0 3 1 snp4 0 4 1 snp5 0 5 If pedstats program available, you can check the datafile with: pedstats -p data1234.ped -d data1234.dat

  50. Practical: the true model General population haplotype frequencies ACAGC 0.25 CCCGC 0.25 CCCGA 0.20 AAATA 0.20 AACTA 0.05 Increases risk for disease ACCGC 0.05

More Related