E N D
Subtema 2.2.1. TIRO HORIZONTAL. El tiro parabólico es un ejemplo de movimiento realizado por un cuerpo en dos dimensiones o sobre un plano. Algunos ejemplos de cuerpos cuya trayectoria corresponde a un tiro parabólico son: proyectiles lanzados desde la superficie de la tierra o desde un avión, el de una pelota de fútbol al ser despejada por el portero, o el de una de una pelota de golf al ser lanzada o golpeada con cierto ángulo respecto del eje horizontal.
El tiro parabólico es la resultante de la suma vectorial de un movimiento horizontal uniforme y de un movimiento vertical rectilíneo uniformemente acelerado. • El tiro parabólico es de dos tipos: tiro parabólico horizontal y tiro parabólico oblicuo.
Tiro parabólico horizontal. Se caracteriza por la trayectoria o camino curvo que sigue un cuerpo al ser lanzado horizontalmente al vacío, resultado de dos movimientos independientes: un movimiento horizontal con velocidad constante y otro vertical, el cual se inicia con una velocidad cero y va aumentando en la misma proporción de otro cuerpo que se dejará caer del mismo punto en el mismo instante.
La forma de la curva descrita es abierta, simétrica respecto a un eje (eje Y) y con un solo foco, es decir una parábola. Por ejemplo en la figura siguiente, se grafica el descenso al mismo tiempo de dos pelotas, sólo que la pelota del lado derecho es lanzada con una velocidad horizontal de 15 m/seg.
Al término del primer segundo ambas pelotas han recorrido 4.9 metros en su caída, sin embargo, la pelota de la derecha también ha avanzado 15 metros respecto de su posición inicial. A los dos segundos ambas pelotas ya han recorrido en su caída 19.6 metros, pero la pelota de la derecha ya lleva 30 metros recorridos como resultado de su movimiento horizontal.
Al cabo de 3 segundos, ambas pelotas habrán descendido 44.1 metros, pero la pelota de la derecha avanza 45 metros horizontales, al transcurrir 4 segundos, las dos pelotas, habrán caído 77.1 metros, pero la pelota de la derecha habrá recorrido 60 metros horizontalmente.
Si se desea calcular la distancia recorrida en forma horizontal puede hacerse con la expresión d = v/t pues la pelota lanzada con una velocidad horizontal tendrá una rapidez constante durante su recorrido horizontal e independiente de su movimiento vertical originado por la aceleración de la gravedad durante su caída libre. • La trayectoria descrita por un proyectil cuya caída es desde un avión en movimiento, es otro ejemplo de tiro parabólico horizontal. Supongamos que un avión vuela a 250 m/seg y deja caer un proyectil, en los diferentes momentos de su caída libre, se puede determinar por medio del método del paralelogramo; para ello, basta representar mediante vectores las componentes horizontal y vertical del movimiento.
Al primer segundo de su caída la componente vertical tendrá un valor de 9.8 m/seg, mientras la componente horizontal de su velocidad será la misma que llevaba el avión al soltar el proyectil, es decir 250 m/seg. Trazamos el paralelogramo y obtenemos la resultante de las 2 velocidades. A los 2 segundos la componente vertical tiene un valor de 19.6 m/seg y la horizontal como ya señalamos conserva su mismo valor: 250 m/seg. Así continuaríamos hasta que el proyectil llega al suelo.
Las ecuaciones que se utilizan en el tiro horizontal son las mismas de la caída libre. En el tiro horizontal se suele calcular la altura desde la cual se lanza el proyectil, el tiempo que tarda en caer, la velocidad vertical que lleva en un tiempo determinado y la distancia horizontal que recorre desde el punto en que es lanzado hasta el punto donde cae al suelo.
Problemas de tiro horizontal • 1.- Se lanza una piedra horizontalmente con una velocidad de 25 m/seg desde una altura de 60 metros. Calcular: a) el tiempo que tarda en llegar al suelo, b) la velocidad vertical que lleva a los 2 segundos, c) La distancia horizontal a la que cae la piedra. • Datos Fórmulas Sustitución • ____ _________________ • VH = 25 m/seg a) t caer = √2h/g t caer = √2 (-60 m)/-9.8 m/seg2. • h = -60 metros b) V2 seg= g t t caer = 3.5 seg • g= - 9.8 m/seg2. • V2seg = -9.8 m/seg2x 2 seg • a) t caer =? c) dH= VH t V2 seg= - 19.6 m/seg • b) V2 seg= ? dH= 25 m/seg x 3.5 seg • c) dH= ? dH = 87.5 metros.
2.- Una pelota es lanzada horizontalmente desde una ventana con una velocidad inicial de 10 m/seg y cae al suelo después de 5 segundos: Calcular a) ¿ A qué altura se encuentra la ventana? b) ¿A qué distancia cae la pelota? • Datos Fórmulas Sustitución • VH = 10 m/seg a) h = gt2/2 a) h = -9.8 m/seg2x (5 seg)2 • t caer = 5 seg 2 • b) dH = VHtcaer • g = -9.8 m/seg2. a) h = -122.5 metros • a) h = ? b) dH = 10 m/seg x 5 seg • b) dH =? b) dH = 50 metros.
3.- Un avión vuela horizontalmente con una velocidad de 800 km/h y deja caer un proyectil desde una altura de 500 m respecto al suelo. Calcular: a) ¿Cuánto tiempo transcurre antes de que el proyectil se impacte en el suelo? b) ¿Qué distancia horizontal recorre el proyectil después de iniciar su caída?
Datos Fórmulas • VH = 800 km/h a) t caer = √2h/g • h = -500 m b) dH = VH t caer. • g = -9.8 m/seg2. Sustitución y resultados. • a) tcaer=? a) tcaer = √2 (-500 m)/ -9.8 m/seg2. • b) dH = ? a) tcaer = 10.10 seg. • Conversión de km/h a m/seg: • 800 km x 1000 m x 1 h = 222.22 m/seg • h 1 km 3600 seg • b) dH = 222.22 m/seg x 10.10 seg = 2244.42 m.