E N D
1. BioMST – Biotechnological Tasks in Microsystem Technology II Günter Roth, Felix von Stetten
2. 1.1 & 1.2 Overview 3. Bioprocess engineering
3.1 Introduction
3.2 Bioreactors
3.3 Upstream processing
3.4 Fermentation
3.5 Downstream processing
3. 1.1 & 1.2 Overview 3.2 Bioreactors
3.2.1 Structure and function
3.2.2 Bioreactor types
3.2.3 Miniature-bioreactors
3.2.4 Balance equations
3.2.5 Aeration and transportation of oxygen
3.2.6 Power input
3.2.7 Scaling up / numbering up
3.2.8 Simulation
4. Importance of Aeration Oxygen supply to cells
Remove of gaseous products (CO2,N2)
Low solubility of oxygen in water ? subsequent supply is required
Solubility of oxygen depends on temperature and pressure
5. Gas exchange between gas bubble and cell
6. Two film model Gaseous phase and liquid phase
Oxygen transport by convection
Stable interface on both sides of the gas-liquid-boundary layer
Diffusive transport of oxygen
Liquid film
Gas film (104 times faster diffusion than in water ? negligible)
Diffusion rate of oxygen through the interface
7. Oxygen uptake rate Biological: microorganisms consume oxygen
Chemical: e.g. Sulfphite method (oxidation of sulphite to sulphate)
Physical: stripping (gassing with nitrogen)
Folie noch verbessern: Was muß konkret gemessen werden. Versuchsaufbau und Messkurve (Ergebnis zeigen)
Links:
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
http://www3.interscience.wiley.com/cgi-bin/fulltext/107591026/PDFSTART
http://www.uni-saarland.de/fak8/heinzle/de/teaching/Technische_Chemie_Prakt/kla_shakeflask.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=972765530&dok_var=d1&dok_ext=pdf&filename=972765530.pdfFolie noch verbessern: Was muß konkret gemessen werden. Versuchsaufbau und Messkurve (Ergebnis zeigen)
Links:
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
http://www3.interscience.wiley.com/cgi-bin/fulltext/107591026/PDFSTART
http://www.uni-saarland.de/fak8/heinzle/de/teaching/Technische_Chemie_Prakt/kla_shakeflask.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=972765530&dok_var=d1&dok_ext=pdf&filename=972765530.pdf
8. Methods to determine the kLa value
Stationary methods (accumulation term negligible: )
OUR is accessible over the mass balance of the gaseous phase(exhaust gas analysis tumble during the biological reaction)
OUR is accessible over the mass balance of the liquid phase (desorption outside the reactor)
Folie noch verbessern: Was muß konkret gemessen werden. Versuchsaufbau und Messkurve (Ergebnis zeigen)
Links:
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
http://www3.interscience.wiley.com/cgi-bin/fulltext/107591026/PDFSTART
http://www.uni-saarland.de/fak8/heinzle/de/teaching/Technische_Chemie_Prakt/kla_shakeflask.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=972765530&dok_var=d1&dok_ext=pdf&filename=972765530.pdfFolie noch verbessern: Was muß konkret gemessen werden. Versuchsaufbau und Messkurve (Ergebnis zeigen)
Links:
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
http://www3.interscience.wiley.com/cgi-bin/fulltext/107591026/PDFSTART
http://www.uni-saarland.de/fak8/heinzle/de/teaching/Technische_Chemie_Prakt/kla_shakeflask.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=972765530&dok_var=d1&dok_ext=pdf&filename=972765530.pdf
9. Methods to determine the kLa value Dynamic method without reaction (OUR = 0)
Gradual change of the saturation concentration C*
Dynamic method with OUR: two-stage survey process
Consumption phase:turn off the gas supply
Saturation phase:turn on the gas supply Folie noch verbessern: Was muß konkret gemessen werden. Versuchsaufbau und Messkurve (Ergebnis zeigen)
Links:
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
http://www3.interscience.wiley.com/cgi-bin/fulltext/107591026/PDFSTART
http://www.uni-saarland.de/fak8/heinzle/de/teaching/Technische_Chemie_Prakt/kla_shakeflask.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=972765530&dok_var=d1&dok_ext=pdf&filename=972765530.pdfFolie noch verbessern: Was muß konkret gemessen werden. Versuchsaufbau und Messkurve (Ergebnis zeigen)
Links:
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
http://www3.interscience.wiley.com/cgi-bin/fulltext/107591026/PDFSTART
http://www.uni-saarland.de/fak8/heinzle/de/teaching/Technische_Chemie_Prakt/kla_shakeflask.pdf
http://deposit.ddb.de/cgi-bin/dokserv?idn=972765530&dok_var=d1&dok_ext=pdf&filename=972765530.pdf
10. How to improve the oxygen transport? Increase of the O2-solubility
Pressure increase from 100 to 200 kPa
Increase the O2-content in the air
enrichment of the aeration with O2
Use of pure O2
Change in the phase boundary (gas/liquid)
size and distribution of the gas bubbles
contact time between the gaseous phase and the liquid phase
Viscosity of the nutrient solution
viscosity reduction ? increases the relative velocity of the gas bubbles ? thinner liquid film ? higher kLa-value
Insertion of surface-active substances (controversial)
Microfluidics (?)
Antischaum: Koaleszenz, kLAntischaum: Koaleszenz, kL
11. 1.1 & 1.2 Overview 3.2 Bioreactors
3.2.1 Construction and function
3.2.2 Bioreactor types
3.2.3 Miniature-bioreactors
3.2.4 Balance equations
3.2.5 Aeration and oxygen transport
3.2.6 Power input
3.2.7 Scaling up / numbering up
12. Power input in a stirred tank reactor (in an un-fumigated state) Stirring power P given to the medium
Dimensionless discription (similarity theory):
Power input:
Newtons number respectivly power number (Ne)
Flow condition:
Reynolds number Re
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdfhttp://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
13. Description of the power characteristic of a stirrer ((in an un-fumigated state) I Laminar flow (Re<10)
II Transition region
III Turbulent flow (Re>104)
IV Surface Aeration (Re>15·104)
Gas bubbles reach from the surface to the stirrer
Power drop since ?air < ?water
Relevant for very small stirred tank reactors
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdfhttp://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
14. Influence of the aeration on the power characteristic Dispersion of gas in the low-pressure domain of the impeller turbulences
Fragmenting of bubbles in smaller bubbles due to shear stress
Increasing gas content on the stirring blade reduces power output
Variables for the description of the aeration influence
http://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdfhttp://www.ibvt.uni-stuttgart.de/lehre/downloads/bvt1_2007/pdf-files/Script_BVT1_Versuch3.pdf
15. Description of the power quotient dependency of the aeration number (I)
16. Description of the power quotient dependency of the aeration number (II) A Low, gas throughput
? Slight dropping of the power quotient
B Discontinous formation and delamination of gas trails ? dropping of the power quotient
C Increasing gas load, flooding of the stirrer. ? Power quotient does not drop any longerGas input in the liquid phase can‘t be increased at the same rotation speed
17. Experimental determination of the power characteristics Measurement of torque Md and stirrer drive speed n
P = ?·Md = 2·p·n·Md
or: Calculation of the power consumption of the motor
18. 1.1 & 1.2 Gliederung 3.2 Bioreactors
3.2.1 Construction and function
3.2.2 Bioreactor types
3.2.3 Miniature-bioreactors
3.2.4 Balance equations
3.2.5 Aeration and oxygen transport
3.2.6 Power input
3.2.7 Scaling up / numbering up
19. Scaling-up or numbering-up? A protocol developed in a miniature bioreactor should be used for the production of antibiotics.
There are two alternatives:
20. Numbering-up Parallel connection of the miniature bioreactors
Nature‘s principle
Unicellular? Multicellular
? leaves of a tree
? trees of a forest
Advantages
No risks and compromises through scaling-up
„Process Intensification“: good energy and material exchange (short diffusion distance)
Disadvantages
Individual process guidance and control for every single miniature reactor necessary
Particularly discussed in chemical process engineering
21. Scaling-up Scaling-up in practice
e.g. 100 ml shake flask ? 3 L lab reactor, 100 L pilot plant ? 3000 L production plant
Bioprocesses are dependent on the scale
e.g. mixing time increases sharply with an increase in volume
Aim of scaling-up
Similarity of geometrical and physical influence variables
Which similarity criteria are relevant?
Mass transport (O2, CO2)
Mechanical stress on the cells
Mixing time / Homogeneity
22. Interdependence of the similarity criteria
23. Significance of the similitude theory and dimensional analysis for scale transfer Similitude theory: scale transfer of a process with the help of dimensionless numbers
Processes are similar if the dimensionless numbers have the same values
Dimensional analysis: Retrieval of dimensionless numbers through collection of the variables which are involved in the process (without using the underlying regularities)
Basic mechanical quantities, derived variables in the {M,L,T}- system
24. Buckingham‘s ?-Theorem If z influence variables form a physical correlation f(?1, ?2, ?3, ... ?z)and if these variables may be traced back to r base variables, the problem can be reduced on p = z - rdimensionless numbers ?i: ?(?1, ?2, ?3, ... ?p)
Thereby the dimensionless numbers are always the power product of the values ?i:
For the determination of the powers ?i you use the fact that the unit of ?i has to be [?i] = 1 (dimensionless) Ny ?
Eta ?
epsilon ?
Phi ?Ny ?
Eta ?
epsilon ?
Phi ?
25. Approach to the dimensional analysis (I) Gathering all relevant z influence variables ?i (incl. event)
Determine the r involved base variables ?j
Arrange in a dimensional matrix with r rows und z columns
Fill in the exponents ?ij into the matrix
Derive the square core matrix
26. Approach to a dimensional analysis(II) Get the square part to diagonal shape
(Gauss algorithm ? linear algebra)
Retrieval of p = z - r dimensionless parameter ?i
27. Example of use (I) Task: During the fermentation of the fungus Rhizopus delemar the fungus mycelium has to be destroyed to improve the nutrient supply (Quantity for the cell destruction: Absorption at 260 nm).With the help of a dimensional analysis, the event shall be described by means of dimensionless numbers.
Gather the relevant factors and base variables
28. Example of use (II) Arrange the influence variables in a {M;L;T}-Matrix
Fill in the exponents
Derive the square core matrix
Get the core matrix to diagonal shape (unit matrix)
29. Example of use (III) Extraction of 5 dimensionless parameters ?i (p = z - r = 8 – 3 = 5)
30. Example of use (IV) Result: The event E cell destruction depends on the following dimensionless:
With additional experiments you can retrieve the following correlation:
Re and Ne play a lesser role than dimensionless residence time
Possible application:
Choice of an applicable stirrer
Scale transfer (scaling-up)
31. 1.1 & 1.2 Overview 3. Bioprocess engineering
3.1 Introduction
3.2 Bioreactors
3.3 Upstream processing
3.4 Fermentation
3.5 Downstream processing
32. 1.1 & 1.2 Overview 3.3 Upstream processing
3.3.1 Process plan
3.3.2 Storage and logistics of feedstock
3.3.3 Mashing and conditioning
3.3.4 Cleaning, disinfection, sterilization
33. Block diagram of a biotechnological process
34. 1.1 & 1.2 Overview 3.3 Upstream processing
3.3.1 Process plan
3.3.2 Storage and logistics of feedstock
3.3.3 Mashing and conditioning
3.3.4 Cleaning, disinfection, sterilization
35. Requirements for storage and logistics Storage period
2-4 weeks (always available substrates)
1 year for seasonal incoming substrates (e.g. Molasses)
Temperature
Cooling of perishable goods (e.g. liquid yeast extract)
Warm storage of solutions if they are in danger of loosing ingredients at too low temperatures (e.g. glucose syrup)
Is sterile storage necessary?
Is it necessary to put the tanks in tank pits for safety reasons?
Requirements for hoisting devices (pumps and pipes)
Requirements for measurement and control technology
Tanks können sich in Tanktassen befindenTanks können sich in Tanktassen befinden
36. Temperate storage of 70 % glucose syrup Auskristallisieren des Glucosesirups bei zu niedriger Temperatur
Ständiges Mischen zur Homogenisierung ? Umpumpen, gleichzeitig Erwärmung im Wärmetauscher bei Bedarf (TIC (Temperature Indication Control) )
Auch Transferleitung beheizt, Dampf statt Wasser für konstante Temperatur, Vakuum zum Einstellen von Temperaturen unter 100 °C
Pressure indication
Weigth indicating alarmAuskristallisieren des Glucosesirups bei zu niedriger Temperatur
Ständiges Mischen zur Homogenisierung ? Umpumpen, gleichzeitig Erwärmung im Wärmetauscher bei Bedarf (TIC (Temperature Indication Control) )
Auch Transferleitung beheizt, Dampf statt Wasser für konstante Temperatur, Vakuum zum Einstellen von Temperaturen unter 100 °C
Pressure indication
Weigth indicating alarm
37. 1.1 & 1.2 Overview 3.3 Upstream processing
3.3.1 Process plan
3.3.2 Storage and logistics of feedstock
3.3.3 Mashing and conditioning
3.3.4 Cleaning, disinfection, sterilization
38. Mashing processes Mashing: Mixing of ingredients (raw materials)
What‘s important?
Control of the correct composition
When mixing solids, avoid lump formation
? Dispersion unit in the mashing tank or a homogenizer
Separate mashing of ingredients which interfere with each other in the subsequent sterilization (sugar and albumen ? Maillard-reaction, “non-enzymatic browning”) ? Separation of glucose and nitrogen sources
Sterile processes in suitable devices (filter, flow-heater, ...)
39. Conditioning processes Molecules transferred in such a form, in which they are usable by microorganisms (e.g. transfer of cellulose in glucose)
Removal of inhibitors (e.g. removal of proteins out of molasses for EtOH synthesis)
40. 1.1 & 1.2Overview 3.3 Upstream processing
3.3.1 Process plan
3.3.2 Storage and logistics of feedstock
3.3.3 Mashing and conditioning
3.3.4 Cleaning, disinfection, sterilization
41. Cleaning, Disinfection, Sterilization Hygienic requirements for different processes
Wastewater treatment, composting: no action required, cultivation of assertive mixed cultures
Production of starter cultures and pure cultures demands sterile conditions, e.g. bacteria of yoghurt, yeast for baker‘s yeast, vine and beer
Production of defined substances demands sterile conditions (amino acids, vitamines, insulin, etc.)
Hygienic measures
Cleaning: Complete removal of sticky products and deposits from surfaces.
Disinfection: Killing of microorganisms (pathogens/germs, competitive flora) with chemical substances or heat generation.
Sterilization: Killing of all microorganisms (inclusive spurs, viruses), as well as the inactivation of enzymes through heat generation
42. Cleaning –Types of residua and how to get rid of them
43. Automatic interior cleaning and interior disinfection of devices, tanks, pipes, … by recirculation of suitable solutions
Procedure
Pre-flushing with water
Flushing with leach (e.g. 5 % NaOH)
Intermediate flushing with water
Flushing with acid (e.g. 5 % H3PO4 / HNO3)
Flushing with clear water
Disinfection (e.g. Na-Hypochlorite or peracetic acid)
Variable process parameters
Flow rate (Turbulence)
Temperature
concentration
Time
Cleaning procedures – Cleaning in Place, CIP Lauge: eiweißreicher Schmutz
Säure: mineralische AnlagerungenLauge: eiweißreicher Schmutz
Säure: mineralische Anlagerungen
44. Cleaning of contaminated surfaces Mechanism
Total wetting of the contamination with cleaning solution, penetrating in pores and cleaving
Chemical reaction and physical processes with dirt components: Solving fats and salts, swelling and peptisation of protein
Delaminating contaminations from the surface and conversion in solution by dispersion and/or emulsification
Prevention of re-deposition through stabilization in the solution
45. Sterilization of equipment – Sterilization in Place, SIP At particularly high requirements concerning hygiene
Mostly over the same installation as CIP
Thermal disinfection
Hot water or saturated steam
Support the effect with injected disinfectant, mostly acidic
Chemical disinfection
Hydrogen peroxide
46. Sterilization of media – methods
Sterile filtration
Moist heat sterilization
Dry heat sterilization
High energy radiation (?-radiation)
Chemical sterilization
Enzymatic sterilization
High pressure sterilization
47. Heat sterilization Kinetics of the inactivation by the impact of heat
Dependence of the inactivationconstant k from the temperatureaccording to Arrhenius
48. Temperature-Time Combinations for the killing of bacteria – Lines of the same effect
49. Chemical and microbiological changes during the heating of media
50. Additional thermal stress during heating and cooling
51. Instrumentation schematic for continuous sterilization of liquids
52. Temperature-time response of different heating methods
53. Evaluation of the Process alternatives Direct-continuous sterilization with steam
Lower heat load through faster heating and cooling
Gentle treatment of thermal labile substances
Simple processing
Continuous sterilization with a heat exchanger
No direct contact with steam
High efficiency