270 likes | 608 Views
Self-Localization. Yu-Chee Tseng NCTU. External Inputs. Components of Localization. 2D/3D maps: building frame structure floor plan internal sensors (g-sensor, gyro) external sensors (radio, GPS, M2M) localization database. Localization Algorithms. sensor data processing
E N D
Self-Localization Yu-Chee Tseng NCTU
External Inputs Components of Localization • 2D/3D maps: building frame structure floor plan • internal sensors (g-sensor, gyro) • external sensors (radio, GPS, M2M) • localization database • Localization Algorithms • sensor data processing • data fusion (e.g., filter) • self-learning (crowdsourcing, calibrating database) • Semantics & Services • navigation • adding “semantics” to locations (office, lounge) • anticipatory reasoning and services
Definition: “Self-Localization” • Infrastructure-Free: • Ex: Only utilize existing infrastructures, such as WiFi, M2M, NFC, landmarks. • Self-Content: • Ex: User devices are smart phones with those common IMU sensors. No external sensors needed. • Self-Adaptive: • Ex: Automatic transition between indoor and outdoor localization. • Ex: … and several others (algorithms, database and landmarks)
Perceivable Landmarks in a 2.5D Space Going upstairs & downstairs Going elevators
2.5D Space Model • floor plan extended graph • vertex = rectangle • edge = passage (with descriptors)
A Particle Filter for Localization • inputs: space model, IMR, RSS pattern, radio map
Zero Velocity Update (1) Stance Stance
Zero Velocity Update (2) • Drawback • The sensor must be mounted on the foot, which leads to large positioning error due to the excessive vibration of the foot Bad Direction Estimation
Walking/Running Velocity Update WUPT Walking Running RUPT
Localization of Vehicles • 車用衛星導航系統的普及率越來越高,使用者對位置的精準度要求相對提高。 • 現今的車輛定位系統多以車載安全為出發,雖開發了各種不同的方法及應用,但因現今技術的限制,無法準確定位車輛位置,限制了許多應用的可行性。 • 目前定位系統無法達到車道等級,然而可達到此準確度之技術卻需要單價昂貴的設備裝置。 • 希望藉由簡單直覺的方式,提供車上系統獲得車輛的準確位置,進而輔助許多應用。 車道等級的 導航資訊 橋上/橋下 分不清楚? 事故車輛主動通知後方
Real Test (實測情形) Blue cat at lane #1 (to make a right turn)
Lane Tracking What’s next after identifying lane number?
Mobile AR • Mobile Augmented Reality Applications Road Sign Recognition Signboard Advertisement ParkingBan Sign Translation National Chiao Tung University
AR vs. MAR • Augmented Reality • 5 Steps • Mobile Augmented Reality • Augmented Realityruns on mobile devices 5. Augmented Information Display 2. Feature Extraction (Feature File) 3. Feature Matching 4. Augmented Information Retrieval 1. Image Capture National Chiao Tung University
Possible Models • Three possibilities: • Single Machine • Client-Server • Semi-Client-Server • Can’t support large-scale system • Waste local storage Images Augmented Information Features Augmented Information • High Latency • Waste communication bandwidth, power consumption National Chiao Tung University
VLC • VLC = VisibleLightCommunication • broadcastingservices: • LEDs to transmit information • Photodiodes to receive information Modulated light 010101010101 1010101010 01010101 101010 01001110101001001
VLC for Localization LBS service Lighting range D1 D2 I am under D4 I am under D3 and D4 Control Host D3 D4 I am under D3 Lighting Device User Location information of D3 Location information of D4
Challenges • Interference problem Collision Modulated light 010101010101 1010101010 01010101 101010 01001110101001001 0101?10???01 101?101??0 01?10?0? 101?1?
Prototyping Jennic module User Devices • Implementation scenario Actuators White LEDs User interface Si photodiode