190 likes | 207 Views
Learn the 5 rules for determining significant figures, with examples and helpful tips for identifying precision digits. Understand zero rules and count sig figs accurately.
E N D
Determining Sig Figs • When given any number, there are rules that can be followed to determine how many digits within that number are “precision” digits, also known as Significant Figures.
Determining Sig Figs • Let’s look at the 5 rules of Sig Figs: • The first rule is the easiest: • All numbers that are non-zero numbers are ALWAYS sig figs. • Underlining the digits that are significant might help you remember they are significant.
Determining Sig Figs • Underline the non-zero digits: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Determining Sig Figs • Underline the non-zero digits: • 1492 (all of these are sig figs) • 101 (both of the 1’s are sig figs) • 200 (only the 2) • 0.005 (only the 5) • 0.750 (only the 7 and the 5) • 102.070 (only the 1, 2, and 7)
Determining Sig Figs • What do we do with all the zeros?? • There are 4 “zero rules” • Zero rule #1: the Sandwich rule • If a zero is anywhere between two sig figs, it is also a sig fig
Determining Sig Figs • Underline the sandwich zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Underline the sig figs and sandwich zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Determining Sig Figs • Zero rule #2: the Trailing Zero rule • Zeros that fall behind a sig fig bit are in front of the understood decimal point are NOT sig figs.
Underline sig figs and cross out any trailing zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Determining Sig Figs • Underline sig figs and cross out any trailing zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Determining Sig Figs • Zero rule #3: the Leading zero rule • Zeros that fall behind the decimal but are in front of a sig fig are NOT sig figs.
Determining Sig Figs • Underline the sig figs and cross out the leading zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Underline sig figs and cross out any leading zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Determining Sig Figs • Zero rule #4: the Precision rule • Zeros that fall behind the decimal AND are behind a sig fig ARE sig figs.
Determining Sig Figs • Underline the sig figs and precision zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Determining Sig Figs • Underline sig figs and precision zeros: • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Determining Sig Figs Tell me how many sig figs are in each example. • 1492 • 101 • 200 • 0.005 • 0.750 • 102.070
Tell me how many sig figs are in each example. • 1492 (4 sig figs) • 101 (3 sig figs) • 200 (1 sig fig) • 0.005 (1 sig fig) • 0.750 (3 sig figs) • 102.070 (6 sig figs)
Things to remember… • Once you call a number a sig fig, you can’t undo it by a later rule. • Always follow the rules as you determine sig figs