1 / 28

Exploring Pushdown Automata in Computational Syntactics

Learn about pushdown automata versus NFA, their state controls, and computational power. Discover how PDAs accept languages through stack manipulation. Converting CFGs to PDAs for better understanding.

mannis
Download Presentation

Exploring Pushdown Automata in Computational Syntactics

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Fall 2011 The Chinese University of Hong Kong CSCI 3130: Formal languages and automata theory Pushdown automata Andrej Bogdanov http://www.cse.cuhk.edu.hk/~andrejb/csc3130

  2. Motivation regularexpression NFA DFA syntactic computational is more powerful than CFG pushdown automaton syntactic computational

  3. Pushdown automata versus NFA state control input 0 1 0 0 NFA

  4. Pushdown automata state control input 0 1 0 0 … stack pushdown automaton (PDA) A PDA is like an NFA with but with an infinite stack

  5. Pushdown automata state control input 0 1 0 0 … $ 0 1 1 stack pushdown automaton (PDA) As the PDA is reading the input, it can push / pop symbols from the top of the stack

  6. Building a PDA state control L = {0n1n: n ≥ 1} push $ We remember each 0 by pushingx onto the stack read 0 push x read 1 When we see a 1, we pop an x from the stack pop x read 1 pop x We want to accept when we hit the stack bottom pop $ We’ll use t$mark bottom

  7. A PDA in action state control L = {0n1n: n ≥ 1} push $ input read 0 0 0 0 1 1 1 push x read 1 pop x … $ x x x read 1 stack pop x pop $

  8. Notation for PDAs q0 e, e / $ push $ q1 0, e / x read 0 push x 1, x / e read 1 pop x q2 1, x / e read 1 pop x e, $ / e pop $ q3 read, pop / push

  9. Definition of a PDA A pushdown automaton is (Q, ,, , q0, F) where: • Q is a finite set of states; •  is the input alphabet; •  is the stack alphabet • q0in Q is the initial state; • F  Q is a set of final states; •  is the transition function d: Q  (  {})  (  {}) → subsets of Q  (G  {}) pop symbol state input symbol state push symbol

  10. Example q0 S = {0, 1} e, e / $ G = {$, x} q1 0, e / x d(q0, e, e) = {(q1, $)} 1, x / e d(q0, e, $) = ∅ d(q0, e, x) = ∅ q2 1, x / e d(q0, 0, e) = ∅ ... e, $ / e q3 d: Q  (  {})  (  {}) → subsets of Q  (G  {}) pop symbol state input symbol state push symbol

  11. The language of a PDA • A PDA is nondeterministicMultiple transitions on same pop/input allowed • Transitions may but do not have to push or pop The language of a PDA is the set of all strings in S* that can lead the PDA to an accepting state

  12. Example 1 • L = {w#wR: w{0, 1}*} • S = {0, 1, #} • G = {0, 1} #, 0#0, 01#10 L e, 01#1, 0##0 ∉L e, e / $ #, e / e e, $/ e q1 q3 q2 q0 0, e / 0 0, 0 / e 1, e / 1 1, 1 / e write w on stack read wR from stack

  13. Example 2 • L = {wwR: w S*} • S = {0, 1} e, 00, 0110 L 1, 011, 010 ∉L e, e / $ e, e / e e, $/ e q1 q3 q0 q2 0, e / 0 0, 0 / e 1, e / 1 1, 1 / e guess middle of string

  14. Example 3 • L = {w: w = wR, w S*} • S = {0, 1} e, 1, 00, 010, 0110 L 0110110110 or 011010110 011 ∉L x xR x xR e, e / e 0, e / e e, e / $ e, $/ e 1, e / e q1 q3 q0 q2 0, e / 0 0, 0 / e 1, e / 1 1, 1 / e middle symbol can be e, 0, or 1

  15. Example 4 L = {0n1m0m1n | n 0, m 0} • S = {0, 1} 0, e / 0 1, e / 1 e, e / e e, e / $ q1 q2 q0 input: 0n 1m 0m 1n stack: 0n 1m e, e / e q4 q3 q5 e, e / e e, $/ e 0, 1 / e 1, 0/ e

  16. Example 5 L = {w: w has same number 0s and 1s} • S = {0, 1} Strategy: Stack keeps track of excess of 0s or 1s If at the end, stack is empty, number is equal e, e / $ e, $/ e q1 q3 q0 1, e / 1 0, e / 0 0, 1 / e 1, 0 / e

  17. Example 5 L = {w: w has same number 0s and 1s} • S = {0, 1} Invariant: In every execution of the PDA: #1 - #0 on stack = #1 - #0 in input so far e, e / $ e, $/ e q1 q3 q0 1, e / 1 0, e / 0 0, 1 / e 1, 0 / e If w is not in L, it must be rejected

  18. Example 5 L = {w: w has same number 0s and 1s} • S = {0, 1} Property: In some execution of the PDA: stack consists only of 0s or only of 1s (or e) e, e / $ e, $/ e q1 q3 q0 1, e / 1 0, e / 0 0, 1 / e 1, 0 / e If w is in L, some execution will accept

  19. Example 5 L = {w: w has same number 0s and 1s} • S = {0, 1} e, e / $ e, $/ e q1 q3 q0 read stack w = 001110 1, e / 1 0, e / 0 0 $0 0 $00 0, 1 / e 1, 0 / e 1 $0 1 $ 1 $1 0 $

  20. Example 6 L = {w: whas two 0-blocks with same number of 0s 01011, 001011001, 10010101001 01001000, 01111 allowed not allowed Strategy: Detect start of first 0-block Push 0s on stack Detect start of second 0-block Pop 0s from stack

  21. Example 6 0, 1 0, e / 0 1 e q1 q0 0, e / 0 e 1 Detect start of first 0-block 2 Push 0s on stack 1 1 0, 1 1 0, 0/ e 3 Detect start of second 0-block 4 Pop 0s from stack

  22. Example 6 L = {w: whas two 0-blocks with same number of 0s 0, e / e 1 2 1, e / e 0, e / 0 0, e / 0 e, e / $ 1, e / e q1 q0 q2 3 q3 1, e / e e, e / $ 0, e / e 0, e / e 1, e / e q4 1, e / e 1, e / e 1, e / e e, $/ e 1, e/ e q7 q6 q5 e, $/ e 4 0, 0/ e

  23. CFG ↔ PDA conversions

  24. CFGs and PDAs L has a context-free grammar if and only if it is accepted by some pushdown automaton. context-free grammar pushdown automaton

  25. A convention • When we have a sequence of transitions like: • We will abbreviate it like this: q0 q1 x, a/ b e, e/ c e, e/ d • pop a, then push b, c, and d q0 q1 x, a/ bcd • replace a by bcd on stack

  26. Converting a CFG to a PDA • Idea: Use PDA to simulate derivations A → 0A1A → BB →# A 0A1 00A11 00B11 00#11 input: PDA control: stack: 00#11 write start variable e, e / A $A 00#11 e, A / 1A0 $1A0 replace production in reverse 0#11 pop terminal and match 0, 0 / e $1A 0#11 e, A / 1A0 $11A0 replace production in reverse #11 pop terminal and match 0, 0 / e $11A #11 e, A / B $11B replace production in reverse

  27. Converting a CFG to a PDA A → 0A1A → BB →# e, $ / e e, e / $A q1 q0 q2 e, A / 1A0 e, A / B e, B / # 0, 0 / e 1, 1 / e #, # / e A 0A1 00A11 00B11 00#11 CFG input 00#11 00#11 00#11 00#11 00#11 stack $A $1A0 $1A $11A0 $11A 00#11 00#11 00#11 00#11 00#11 $11B $11# $11 $1 $

  28. General PDA to CFG conversion a, a / e e, A / ak...a1 for every terminal a for every production A → a1...ak e, e / $S e, $ / e q2 q1 q0

More Related