1 / 57

Progenitors : Mass loss determines SN Type.

Why is circumstellar interaction of SNe important?. Progenitors : Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core) Ejecta structure : Shock dynamics probes density structure of SN ejecta

manon
Download Presentation

Progenitors : Mass loss determines SN Type.

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Why is circumstellar interaction of SNe important? Progenitors: Mass loss determines SN Type. Type IIP (little mass lost), ....IIn, IIb ( < 0.5 M of H envelope), Ib (only He core), Ic (only O core) Ejecta structure: Shock dynamics probes density structure of SN ejecta Shock physics: Thermal radiation processes (X-rays) Non-thermal radiation processes (radio) Relativistic particle acceleration Dust production SN – GRB connection: GRB afterglow determined by circumstellar environment of the SN.

  2. Mass loss processes I.Single stars Blue SGs u ~ 500 – 3000 km/s dM/dt 10-7 – 10-5 MO /yr Red SGs u ~ 10 – 50 km/s dM/dt 10-6 – 10-4 MO /yr Superwinds (cf. AGB's): Heger et al (1997) find large amplitude pulsations with several MO per 10,000 years dM/dt ~ 10-4 MO/yr II Binaries Winds RL overflow, common envelope phases....

  3. Best studied CS case: SN 1993J SN 1993J in M 81 3.6 Mpc

  4. Evidence for CS interaction Radio: Synchrotron spectrum Wavelength dependent turn-on of emission All types of core collapse SNe observed SN 1993J IIb SN 1979C IIL 21 cm 1.3 cm 1.3 cm 21 cm Van Dyk et al 1994, Weiler, Panagia, Sramek 2002 Montes et al 2000

  5. Sramek (2002) All types of core collapse SNe detected (IIP, IIL, IIn, Ib, Ic). No Type Ia SNe!

  6. SN 1993J VLBI Bartel et al Marcaide et al. 17 May 1993 3 Jun 1998

  7. Optical Type IIb Filippenko et al 1994 Fransson et al 2004 Transition from Type II to Type Ib Box-like line profiles  narrow emitting shell

  8. Type IIn SNe Narrow lines from dense CSM. Strong CS interaction.

  9. SN 1993J ROSAT PSPC Zimmermann et al

  10. Ejecta structure SN 1987A Power law for V > 3500 km/sV-10 - V-12

  11. Chevalier (1982) Chevalier & CF (1994)

  12. Shock structure Fransson et al 1996 Chevalier & Blondin 1995

  13. Line profiles (Filippenko 1997) Broad line SNe: IIL, Ib Narrow line SNe: IIn

  14. Two cases for the line widths 1. ej >> CSMType IIL, IIb SN 1993J, SN 1979C Steady wind Line width ~ Vej 2.ej << CSMType IIn… SN 1995N, SN 1998S Blobs, rings, short-lived superwinds… SN 1987A Line width ~ Vblast << Vej

  15. SN 1993J X-rays ROSAT 01. - 2.4 keV (Zimmermann et al 1994, Immler et al 2002) ASCA 1 – 10 keV (Uno et al 2002) COMPTON-GRO/OSSE 50 – 200 keV (Leising et al 1994) Chandra(Swartz et al 2002) XMM/Newton(Zimmermann & Aschenbach 2003)) t < 50 days kT ~ 100 keV Lx 5x1040 erg/s 50 - 200 keV 2x1039 erg/s 0.1 - 2.4 keV t > 200 days kT ~ 1 keV Lx 1x1039 erg/s 0.1 - 2.4 keV Transition from hard to soft spectrum! Temperature (keV) Day after explosion Zimmermann & Aschenbach 2003

  16. X-ray evolution CF, Lundqvist & Chevalier 1996 At 10 days: Only X-rays from outer, CS shock T~109 K At 200 days: X-rays from reverse shock dominates T~107 K Hard to soft evolution natural consequence of the cool shell

  17. X-ray spectra useful probes of the ejecta composition solar helium zone Nymark et al 2006 oxygen zone carbon zone

  18. SN 1993J Nymark, Chandra, CF 2007 data: XMM Zimmermann & Aschenbach Chandra: Swartz et al 2003 CNO enriched H or He envelope

  19. UV & optical line emission Cool shell, reverse shock SN ejecta partially ionized, T<7000K fully ionized  neutral, T ~ (1-3)x104 K H, Mg II, Fe II O III-IV, N III-V, Ne III-V

  20. SN 1993J HST (SINS) + Keck Mg II He I H [O III] Good fit with ejecta + cool, dense shell Shock at ~ 10,000 km/s Consistency of X-ray flux and UV/optical flux

  21. Radio light curves SN 1979C IIL Montes et al 2000 21 cm 1.3 cm Van Dyk et al 1994, Weiler, Panagia, Sramek 2002 SN 1993J IIb

  22. RADIO Free-free absorption by the CSM Twind ~ 105 K(Lundqvist & CF 1989) Good fit to Type IIL SNe (SN 1979C, 1980K…..) Reliable mass loss rates need calculation of Twind

  23. Synchrotron self-absorption

  24. SN 1993J Fransson & Björnsson 1998 SSA + free-free SSA only

  25. Magnetic field and particle density in SN 1993J 1. Wind B-field 1-2 mG at 1016 cm (Cohen et al 1987) Amplification of B-field behind shock. Turbulence? (Jun & Norman 1996) 2. UB/Utherm 0.15 3. Urel  Utherm

  26. Model and SN 1993J VLA light curves Assume: UB Utherm, Urel  Utherm Self-consistent calculation of rel. electron spectrum, including all cooling processes, as well as radiative transfer CF & Björnsson 1998 Obs: VLA: van Dyk et al 1994, Weiler, Panagia, Sramek 2002 csm r-2 OK!! No evidence for mass loss variations or s  2. 2. dM/dt = 5x10-5 MO/yr for u=10 km/s, same as from X-rays 3. Injection spectrum nrel-2.1.Synchrotron cooling steepens this!

  27. Free-free vs synchrotron self-absorption Chevalier 1998 FF SSA

  28. VLBI and H velocity for different ejecta models Red = H Black = VLBI/1.3 VLBI and H velocity evolution require a steep density gradient at ~ 13,000 km/s

  29. Mass loss rates Type IIP's dM/dt 10-6 MO yr-1 (for u = 10 km s-1). RSG wind OK Type IIL's dM/dt  2x10-5 – few x 10-4 MO yr-1 (for u = 10 km s-1). 'super wind' (Heger et al) t = Vs/u tobs 5x102 tobs > 104 / (u/10 km s-1) yrs i.e., several MO lost Type IIn's dM/dt  10-4 -10-3 MO yr-1 (for u = 10 km s-1). super wind Clumping (Chugai)? Asymmetric wind (Blondin, Chevalier, Lundqvist)? Type Ib/c's dM/dt 10-7 - 10-5 MO yr-1 (for u = 1000 km s-1). WR stars? Mass loss rate uncertain

  30. CNO burning SN 1979C (IIL), 1987A (IIP), 1993J (IIb), 1995N (IIn), 1998S (IIn) all have N/C >> 1 (Fransson et al 1989, 2001, 2004) SN 1998S HST (SINS) SN 1998S N/C ~ 6 SN 1995N N/C ~ 4 SN 1993J N/C ~ 12 SN 1987A N/C ~ 5 SN 1979C N/C ~ 8 Solar N/C ~ 0.25

  31. N/C increases with mass loss 40 M at ZAMS N/C >> 1  CNO burning  heavy mass loss + mixing Meynet & Maeder 2003

  32. N/C strong fcn of mass loss 40 M at ZAMS Meynet & Maeder 2003 N/C >> 1  CNO burning  heavy mass loss + mixing SN 1993J model Woosley et al 1994

  33. N/C strong fcn of mass loss N/C >> 1  CNO burning  heavy mass loss + mixing Meynet & Maeder 1992 SN 1993J model Woosley et al 1994

  34. Conclusion of CNO: SN 1993J model Woosley et al 1994 Progenitors must have lost most of the hydrogen envelope before explosion Confirms mass loss as the important factor for the SN Type

  35. SN 1987A ring collision SAINTS collab.

  36. Origin of the rings R ~ 1018 cm, Vexp ~10 km s-1 tdyn~2x104 years N/C ~ 5 Origin (?): Merger inducing the equatorial mass loss and outer rings (Podziadlowski 1992, Heger & Langer 1998, Morris & Podziadlowski 2005) Can this happen in a Ic progenitor? Late SN2001em emission (Chugai & Chevalier 2006)

  37. Chandra & ATCA Park et al Manchester et al

  38. Dust emission Gemini S + Spitzer Bouchet et al 2006 Spitzer 11.7  18.3  T ~ 166 K Si feature collisionally heated

  39. VLT/UVES FWHM ~ 6 km s-1 Seeing 0.5-0.8” Resolves N/S Gröningsson et al 2006

  40. Gröningsson et al 2006 [O III] 5007 H narrow broad He I Narrow FWHM ~ 10 km s-1 from unshocked ring Broad Vmax 300-400 km s-1 from shocked ring (Pun et al 2002)

  41. Reverse shock Gröningsson et al (2006) Smith et al (2006), Heng et al (2006) VLT/FORS Dec 2006 2002 2000 Velocity (104 km/s) Broad ~16,000 km/s emission from reverse shock going back into ejecta

  42. Intermediate velocity lines from shocked ring protrusions Oct 2002 Gröningsson et al 2006 N part of ring ~ ‘Spot 1’. Peak velocity ~ 120 km s-1. Max extension ~ 300 km s-1

  43. VLT/SINFONI March 2005 He I 2.06  Adaptive optics integral field unit for J, H, K Kjaer et al 2007 J-band Expansion velocities along ring

  44. Gröningsson et al 2006 Coronal lines VLT/UVES spectrum Max. velocity ~ shock velocity ~ 300-400 km/s Fe XIV  5303  Ts ~ 2x106 K H, He I, N II, O I-III, Fe II, Ne III-V….. Cooling, photoionized gas behind radiative shock into ring protrusions

  45. Hydrodynamics of ring collision Optical emission from radiative shocks into the ring material Radio and hard X-rays from reverse shock Borkowski et al 1997 Pun et al 2002

  46. Borkowski et al 1997

  47. Radiative shock structure Vs = 350 km/s no = 104 cm-3 shock photoion. broad H, [OIII],… photoion. precursor narrow Ha, [N II], [O III] coll. ioniz. X-rays Coronal lines Post-shock densities ~5x106 - 107 cm-3. Agrees with nebular diagnostics

  48. shock Te Fe Optical lines probe different temperature intervals in the cooling gas behind the radiative shocks

  49. Coronal line diagnostics Gröningsson, Nymark… Shock velocity Shock velocity into hot-spots 300 – 400 km s-1 Ts ~ 2x106 K Coronal lines complement the X-rays to probe whole temp. range

More Related