1 / 17

§5.1: Magnetic Field

§5.1: Magnetic Field. Christopher Crawford PHY 417 2015-01-16. Outline. Magnetic field and torque William Gilbert – field lines of permanent magnets Hans Christian Ørsted – magnetic field of a current Magnetostatics André-Marie Ampère – force on two straight wires

many
Download Presentation

§5.1: Magnetic Field

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. §5.1: Magnetic Field Christopher Crawford PHY 417 2015-01-16

  2. Outline • Magnetic field and torque William Gilbert – field lines of permanent magnets Hans Christian Ørsted – magnetic field of a current • Magnetostatics André-Marie Ampère – force on two straight wires Current element – continuity equation

  3. Static force laws Electrostatics – Coulomb’s law Magnetostatics – Biot-Savart law B.C.’s:Flux lines bounded by charge Flux lines continuous Flow sheets continuous (equipotentials) Flow sheets bounded by current

  4. History of magnetism • The magnetic force was known in antiquity • Magnetism more predominant in nature but more difficult to quantify: • Permanent magnets (magnetization), not electric currents • No magnetic (point) charge (monopole) –> dipole effect (N,S poles) • 1-d currents instead of 0-d charges –> can’t split a wire! • Static electricity produced in the lab long before steady currents • Timeline (from “A Ridiculous Brief History of Electricity and Magnetism”) • 600 BC Thales of Miletus discovers lodestone’s attraction to iron • 1200 AD Chinese use lodestone compass for navigation • 1259 AD Petrus Peregrinus (Italy) discovers the same thing • 1600 AD William Gilbert discovers that the Earth is a giant magnet • 1742 AD Thomas LeSeur shows inverse cube law for magnets • 1820 AD Hans Christian Ørsted discovers that current twists magnets Andre Marie Ampere shows that parallel currents attract/repel Jean-Baptiste Biot & Felix Savart show inverse square law

  5. Early magnetism https://www.tcd.ie/Physics/Magnetism/Guide/compass.php • Wu Ching Tsung Yao (1040) • First mention of the magnetic compass • Petrus Perigrinus (1269) • “Epostolia de Magnete” – rediscovered it • William Gilbert (1600) • “De Magnete” – the earth is a magnet • René Descartes • effluvia of "threaded parts”

  6. Magnetic fields • In magnetism it is more natural to start with the concept of “Magnetic field” than the actual force law! (dipole) • Compass alignswith B-field • Iron filings lineup along magneticfield lines • Magnetic field lines look like an electric dipole (in fact the magnetic dipole was discovered first!)

  7. Iron Filings

  8. Iron Filings

  9. Difference between E, B dipoles • Same as the differences between Flux and Flow! • Charge = sources of flux • Conservative flow [potential] • Example: Amber (electric) • Rub to charge • 2 charges (+/–) “monopole fluids” • Exerts force on charges • Continuous field lines [flux] • Rotational (source of flow?) • Example: Lodestone (magnet) • Always charged • 2 poles (N/S) “inseparable dipole” • Exerts torque on other magnets

  10. First connection to currents: • from Wittaker, “A history of the theories of Aether and Electricity”

  11. The current connection • There is no magnetic monopole – N/S cannot be separated • The source of all magnetism is electric current • A dipole is just a current loop • Hans Christian Ørsted • Current produces B-field • Quantified by Biot & Savart

  12. Hans Christian Ørsted: • from Wittaker, “A history of the theories of Aether and Electricity”

  13. Electrodynamics • André-Marie Ampère showed that parallel currents attractand antiparallel currents repel • The magnetic force is the basis for electromagnetic units

  14. Ampère’s generalization • Experimental laws: • Force formula • Problem • The force between two current elements does NOTpoint along the line from the one to the other!

  15. Peer criticism MAXWELL HEAVISIDE

  16. Current elements • Analogous to charge elements – different dimensions • Relations between charge / current and different dimensions – analogy: multi-lane highway – current flux

  17. Continuity equation • Local conservation of charge • Current I is a flux; current density J = flux density • 4-vector current

More Related