350 likes | 460 Views
Mip Resolution/Linearity/Long. Profile/X0 Attenuation. MIP. Loose Selection Etot_adc_high < 1500 Tight Selection Etot_adc_high < 1000 Elayer_adc_high <100 Special Selection. Etot_adc_high. Fit. Landau Gaussian + exponential background
E N D
Mip • Resolution/Linearity/Long. Profile/X0 • Attenuation
MIP • Loose Selection • Etot_adc_high < 1500 • Tight Selection • Etot_adc_high < 1000 • Elayer_adc_high <100 • Special Selection Etot_adc_high
Fit • Landau Gaussian + exponential background • Mip is given by the MPV of the Landau function • Meaning of • Landau/ Gaussian Width • would like to relate one to the single channel resolution
Comparison All methods Delta = ~ 1adc Special Loose Tight Zuhao Sylvie
Energy Resolution • Lists of Runs • 6 Gev : 386,387 • 10 GeV : 427,381,453,557, • 30 GeV : 356 • 50 GeV : 392 • 70 GeV : 396 • 100 GeV : 397 • 120 GeV : 414,418,419 • 150 GeV : 401,517 • 180 GeV : 405 • 210 GeV : 395,407,408 • 250 GeV : 394,393,410 • Position (~ center of cell) • Xtab = - 2.7 mm • Ytab = + 2.7 mm
MIP from Loose Selection • Gain : • protons • 10, 30 and 150 GeV • Gaussian Fit of high_gain/low_gain Detailed studies: Stefano & Sylvie
Election Identification • Some Energy largely polluted by hadrons (6 GeV and 10 GeV) • Selection on the Shape : • E9x/E25x and E9y/E25y • Widthx and Widthy • multiplicity
Electron ID (con’t) 6GeV 30GeV
1rst Iteration of Position Correction 30 GeV Electrons Y • Approximate ADC to GeV conversion using 6 GeV (minimal leakage) • Color : Etot_mean / E_beam (i.e red ~ 1) • Idem for all 11 energies • → Average correction depending on barycenter position (10 * 10 bins) X bary ( 0 > cell center)
Leakage Correction • Approximate GeV Conversion using: • 6 GeV/Etot_adc. = 2225. • Vitaly & Loic ’s method • Ebeam/Erec = f( E_layer17/Erec) • f : 1st degree polynomial → slope, const per energy • mean slope / mean cons Example @ 30 GeV
Ebeam/Erec = f((E_lay16+E_lay17)/Erec ) • to be compared with E_lay17/Erec • Combine all Beam energies in the same plot • Fit one slope and one constant
Linearity and Resolution • No selection according to position • Same treatment @ all energies’ • NB : better if cut on xbary & ybary
S. Rosier 6 GeV
S. Rosier 70 GeV
S. Rosier 210 GeV
S. Rosier X0=1.07 lu => 17.2 X0 pour le calo
Attenuation • Mip • protons scan in X and Y • position is given by the table coordinate • all layers • Electrons Scan in X and Y • 10 GeV,30 GeV (and 150 GeV) • position is given : • Case 1 : by the table (easier) • Case 2 : by the tracker …. • central layers • Hypothesis • attenuation identical for all cells • combined fit • PM 17/18 • > Cell 34 to 37
Example of Mip Variation along X/Y Close to PM Far to PM
Example of Mip Evolution The line is to guide the eyes … mm (Table position)
Electrons (case1) PM 17 } cell 34+cell35 Beam • Idem in X and Y • 10 GeV > high gain • 30 GeV & 150 GeV > low gain • Dynode signal also used • Case where the position is given by the (relative) table position
Electrons (Case 1) Fit : Gaussian + Exponential background
Example of Distribution (case 1) Dynode Anode
Combined Fit • 3 parameters • Frac, Fast, Slow • N amplitudes • Electrons • pos < 2 cm from edges not used
Attenuation Results Δ(black-red) • Black : 10 & 30 GeV – table position • Red : idem – xytracker • Green : Mip only • Blue : Mip , 10 & 30 GeV • Yellow : idem + 150 GeV electrons
Ytracker vs Ycoo ladder 0/ zoom ladder 1 ytracker • xcoo = 9.1 xbary – 311.5 • ycoo = 9.1 ybary – 316.5 ladder 2 ycoo
Fold ycoo wrt to Table displacement • ycoo = ycoo +ΔTable • Restrict ycoo to the center of the cell (better measurement) • “same beam” • ytracker = P1*ycell + P0 • idem for the 3 ladders • mean
Final adjustement Final P1 / 648 mm P0 • We have now a Y position independent of the calorimeter
Back to Attenuation () • 10 GeV and 30 GeV electrons • E_Layer (anode/dynode) vs x-ytracker