1 / 152

Motivation

Motivation. 5. Example 1: Fano configuration (projective plane). 6. 7. 3. 1. 4. 2. Exercises. N1: Determina all lines passing through the point 3 of Fano plane. N2: How many lines pass through 4 and 6? N3: How many lines pass through 1, 2, 3?

marcie
Download Presentation

Motivation

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Motivation 5 Example 1: Fano configuration (projective plane). 6 7 3 1 4 2

  2. Exercises • N1: Determina all lines passing through the point 3 of Fano plane. • N2: How many lines pass through 4 and 6? • N3: How many lines pass through 1, 2, 3? • N4*: Is it possible to draw Fano plane with straight lines? • N5*: Describe various properties of Fano plane. For example: Each number from 1 to 7 appears exactly three times in the table.

  3. Incidence structure • An incidence structureCis a triple • C = (P,L,I) where • P is the set ofpoints, • Lis the set of blocks or lines • I  P Lis anincidence relation. • Elements from I are calledflags. • The bipartite incidence graph G(C) with black vertices P, white verticesLand edges I is known as theLevi graph of the structure C.

  4. Pappus Configuration 1 2 3 2’’ 3’’ 1’’ 2’ 3’ 1’

  5. Naloge • N1: Koliko točk in koliko premic ima Papusova konfiguracija • N2: Koliko premic poteka skozi posamezno točko Papusove konfiguracije? • N3: Koliko je največ in koliko je najmanj premic, ki potekajo skozi par različnih točk Papusove konfiguracije? • N4: Zapiši tabelo (kombinatorični opis) za Papusovo konfiguracijo. • N5*: V sadovnjak zasadi 9 dreves v 10 vrst, tako da bodo v vsaki od desetih vrst po 3 drevesa!

  6. Še en zgled • Slika na levi vsebuje 4 točke 1,2,3,4 in štiri krožnice a,b,c,d. Kombinatorični opis daje konfiguracijska tabela: 1 2 4 3

  7. Še en zgled - nadaljevanje • Konfiguracijsko tabelo lahko prikažemo “grafično”.

  8. Še en zgled - konec B • Naloge: • N1: Napiši konfiguracijsko tabelo oglišč in lic četverca (tetraedra). • N2: Napiši konfiguracijsko tabelo za konfiguracijo oglišč in robov četverca. • N3: Pokaži, da prva in zadnja konfiguracija ne razločujeta. 4 3 1 A D 2 C

  9. Miquelova konfiguracija • Konfiguracija 4 točk in 6 krožnic na levi se imenuje Miquelova konfiguracija. [Tu pojmujemo tudi premice za krožnice!] • Konfiguracija izhaja iz Miquelovega izreka.

  10. Miquelova konfiguracija - nadaljevanje Naloge: • N1: Ali je tudi konfiguracija na levi Miquelova? Preveri s primerjavo kombinatoričnih opisov. • N2: Koliko točk in koliko krivulj imata konfiguraciji?

  11. Examples • 1. Each graph G = (V,E) is an incidence structure: P = V, L = E, (x,e) 2 I if and only if x is an endvertex of e. • 2. Any family of sets FµP(X) is an incidence structure. P = X, L = F, I = 2. • 3. A line arrangement L = {l1, l2, ..., ln} consisting of a finite number of n distinct lines in Euclidean plane E2 defines an incidence structure. Let V denote the set of points from E2 that are contained in at least two lines from L. Then: P = V, L = L and I is the point-line incidence in E2.

  12. Exercises • N1. Draw the Levi graph of the incidence structure defined by the complete bipartite graph K3,3. • N2. Draw the Levi graph of the incidence structure defined by the powerset P({a,b,c}). • N3. Determine the Levi graph of the incidence structure, defined by an arrangemnet of three lines forming a triangle in E2.

  13. Incidence geometry • Incidence geometry (G,c)of rank k is a graph G with a proper vertrex coloring c, where k colors are used. • Sometimes we denote the geometry by (G,c,I,~). Here c:VG ! I is the coloring and |I| = k is the number of colors, also known as the rank of G. Also ~ is the incidence. • I is the set of types. Note that only object of different types may be incident.

  14. Examples • 1. Each incidence structure is a rank 2 geometry. (Actually, look at its Levi graph.) • 2. Each 3 dimensional polyhedron is a rank 3 geometry. There are three types of objects: vertices, edges and faces with obvious geometric incidence. • 3. Each (abstract) simplicial complex is an incidence geometry. • 4. Any complete multipartite graph is a geometry. Take for instance K2,2,2, K2,2,2,2, K2,2, ..., 2.

  15. Incidence geometries of rank 2 • Incidence geometries of rank 2 are simply bipartite graphs with a given black and white vertex coloring. • Rank 2 geometries that are in addition connecte: d and the valence of each verteix is at least 2d(G) >1 Pasini geometries.

  16. Example of Rank 2 Geometry • Graph H on the left is known as the Heawood graph. • H is connected • H is trivalent: d(H) = D(H) = 3. • H je bipartite. • H is a Pasini geometry.

  17. Another View • Geometry of the Heawood graph H has another interpretation. • Rank = 2. There are two types of objects in Euclidean plane, say, points and curves. • There are 7 points, 7 curves, 3 points on a curve, 3 curves through a points. • The corresponding Levi graph is H!

  18. In other words ... • The Heawood graph (with a given black and white coloring) is the same thing as the Fano plane (73), the smallest finite projective plane. • Any incidence geometry can be interpeted in terms of abstract points, lines. • If we want to distinguish geometry (geometric interpretation) from the associated graph (combinatorial description) we refer to the latter the Levi graph of the corresponding geometry.

  19. Simlest Rank 2 Geometries Cycle (Levi Graph) • “Simplest” geometries of rank 2 in the sense of Pasini are even cycles. For instance the Levi graph C6 corresponds to the triangle. Triangle (Geometry)

  20. Rank 3 • Incidence geometries of rank 3 are exactly 3-colored graphs. • Pasini geometries of rank 3 are much more restricted. Currently we are interested in those geometries whose residua are even cycels. • Such geometries correspond to Eulerian surface triangulations with a given 3-vertex coloring.

  21. Reye Configuration • Reye Configuration of points, lines and planes in the 3-dimensional projective space consists of • 8 + 1 + 3 = 12 points (3 at infinity) • 12 + 4 = 16 lines • 6 + 6 = 12 planes.

  22. Theodor Reye • Theodor Reye (1838 - 1919), German Geometer. • Known for his book :Geometrie der Lage(1866 in 1868). • Published this configuration in 1878. • Posed “the problem of configurations.”

  23. Centers of Similitude • We are interested in tangents common to two circles in the plane. • The two intersections are called the centers of similitudes of the two circles. The blue center is called the internal (?), the red one is the external.(?) • If the radii are the same, the external center is at infinity.

  24. Residual geometry • Each incidence geometry • G =(G, ~, c, I) • (G,~) a simple graph • c, proper vertex coloring, • I collection of colors. • c: VG! I • Each element x 2 VG determines a residual geometry Gx. defined by an induced graph defined on the neighborgood of x in G. G Gx x

  25. Reye Configuration -Revisited • Reye configuration can be obtained from centers of similitudes of .... (check Hilbet ...)

  26. Flags and Residuals • In an incidence geometry G a clique on m vertices (complete subgraph) is called a flag of rank m. • Residuum can be definied for each flag F ½ V(G). G(F) = Å{G(x) = Gx |x 2 F}. • A maximal flag (flag of rank |I|} is called a chamber. A flag of rank |I|-1 is called a wall. • To each geometry G we can associate the chamber graph: • Vertices: chambers • Two chamber are adjacent if and only if they share a common wall. • (See Egon Shulte, ..., Titts systems)

  27. The 4-Dimensional Cube Q4. 0010 0001 0000 0100 1000

  28. The Geometry of Q4. • Vertices (Q0) of Q4: 16 • Edges (Q1)of Q4: 32 • Squares (Q2) of Q4: 24 • Cubes (Q3) of Q4: 8 • Total: 80 • The Levi graph of Q4 has 80 vertices and is colored with 4 colors.

  29. Residual geometries of Q4.

  30. Exercises • N1: Determine all residual geometries of Reyeve configuration • N2: Determine all residual geometries of Q4. • N3: Determine all residual geometries of Platonic solids. • N4: Determine the Levi graph of the geometry for the grup Z2£Z2£Z2, with three cyclic subgroups, generated by 100, 010, 001, respectively. • (Add Exercises for truncations!!!)

  31. COMBINATORIAL CONFIGURATIONS

  32. (Combinatorial) Configuration • A (vr,bk) configuration is an incidence structure C = (P,L,I) of points and lines,such that • v = |P| • b = |L| • Each point lies on r lines. • Each line contains k points. • Two lines intersect in at most one point.. • Pozor: Levijev graf je semiregularen z ožino 6

  33. Symmetric configurations • A (vr,bk) configuration is symmetric, if • v = b (this is equivalent to r = k). • A (vk,bk) configuration is usually denoted by (vk) configuration.

  34. Small Configurations • Triangle is the only (32)configuration. • Pasch configuration (62,43) and its dualcomplete quadrangle (43,62) share the same Levi graph S(K4).

  35. Desargues Configurationand itsLevi Graph G(10,3)

  36. Problem: Find a Model! • We know that G(10,3) embeds in double torus. • Is there a nice model out there? • Here are the faces: • 7, 18, 19, 10, 11, 12, 13, 8 • 6, 15, 14, 13, 12, 17, 18, 7 • 5, 6, 7, 8, 9, 10, 19, 20 • 2, 3, 14, 15, 16, 17, 12, 11 • 1, 2, 11, 10, 9, 4, 5, 20 • 1, 16, 15, 6, 5, 4, 3, 2 • 1, 20, 19, 18, 17, 16 • 3, 4, 9, 8, 13, 14

  37. Exercises

  38. CYCLIC CONFIGURATIONS AND HAAR GRAPHS

  39. Haarov graf naravnega števila Naravnemu številu n priredimo graf na naslednji način: Naj k označuje število števk v dvojiškem zapisu števila n in naj bodo {bk-1, bk-2, ..., b1, b0} dvojiške števke števila n. Graf H(n) = H(k; n), ki mu rečemo Haarov graf števila n, ima vozlišča ui, vi, i=0,1,...,k-1. Vozlišče ui povežemo z vozliščem vi+j, če in samo če je bj = 1. Opomba: Če za k vzamemo število, ki je večje od števila števk, dobimo v seveda drugačen graf!

  40. Zgled Poiščimo H(37). Dvojiški seznam: • {1,0,0,1,0,1} Število k = 6. H(37) = H(6,37) je graf na levi!

  41. Dipol qn • Dipol qn ima dve vozlišči, ki ju povezuje n povezav. Če želimo vozlišči posebej označiti, imenujemo prvo vozlišče črno, drugo pa belo. Na levi vidimo q5. • Vsak dipol je dvodelen graf, zato so tudi krovi nad dipoli dvodelni. Dipol q3 je kubičen graf, ki mu nekateri pravijo kar theta grafq.

  42. Ciklični krov nad dipolom • Vsak Haarov graf je tudi ciklični krov nad dipolom. Na prejšnjem zgledu se lahko naučimo recept: • H(37) je določen s številom 37, oziroma z dvojiškim nizom • (1 0 0 1 0 1) • Dolžina niza je k=6, od tod grupa Z6. Pod niz zapišemo indekse: • (0 1 2 3 4 5) • Enice se pojavljajo na mestih 0, 3 in 5. To pa določa napetosti na levi. Pripadajoči krov je H(37). 0 3 5 Z6

  43. Naloge • Graf na levi strani se imenuje Heawoodov graf. Dokaži: • Je dvodelen • Je Haarov. (Poišči ustrezno število n!) • Zapiši ga v obliki cikličnega krova nad dipolom. • Ne vsebuje nobenega cikla dolžine < 6. • Je najmanjši kubični graf brez ciklov dolžine < 6.

  44. Povezani Haarovi grafi • Graf G je povezan, če lahko najdemo pot med poljubnima vozliščema. • Med Haarovimi grafi obstajajo tudi nepovezani. Tak je na primer H(10). • Pravimo, da je število povezano, če je pripadajoči Haarov graf povezan. • Primeri majhnih nepovezanih števil: 2,4,8,10,16,32,34,36,40,42,64.

  45. Naloge • Dokaži, da so vse pozitivne potence števila 2 nepovezana števila. • Pokaži, da je Möbius-Kantorjev graf G(8,3) Haarov graf nekega naravnega števila. Katero število je to? • Poišči vse posplošene Petersenove grafe, ki so Haarovi grafi kakšnega števila. • Pokaži, da obstajajo Haarovi grafi, ki so tudi cirkulanti. • Pokaži, da obstajajo Haarovi grafi, ki niso cirkulanti.

  46. Naloge, nadaljevanje • Dokaži, da so vsi Haarovi graf vozliščno tranzitivni. • Dokaži, da je vsak Haarov graf Cayleyev graf za diedrsko grupo. • Dokaži, da obstajajo dvodelni Cayleyevi grafi diedrskih grup, ki niso Haarovi (npr. graf na levi je tak).

  47. Naloge, konec • Števili n in m sta ciklično ekvivalentni, če in samo če lahko dvojiški niz, ki pripada prvemu prevedemo na dvojiški niz drugega števila s “cikličnimi” avtomorfizimi. To pomeni, da lahko nize ciklično permutiramo, zrcalimo ali pa indekse množimo s številom tujim proti dolžini niza. • Števili n in m sta Haarovo ekvivalentni, če sta njuna Haarova grafa izomorfna: H(n) = H(m). • Dokaži, da ciklična ekvivalenca implicira Haarovo ekvivalenco. • Z računalnikom preveri, da sta števili 137331 in 143559 Haarovo ekvivalentni, nista pa ciklično ekvivalentni.

  48. Graf Marka Watkinsa • Kubični Haarov graf H(536870930) ima zanimivo lastnost. Je najmanjši povezan Haarov graf, ki med ciklično ekvivalentnimi nima nobenega lihega števila. • Dokaži, da je vsak Haarov graf lihega števila H(2n+1) hamiltonski in zato povezan.

  49. Ožina povezanih Haarovih grafov • K2 je edini povezani enovalentni Haarov graf. • Sodi cikli C2n so povezani dvovalentni Haarovi grafi. • Izrek: Naj bo H povezan Haarov graf valence d > 2. Tedaj je njegova ožina bodisi 4 bodisi 6.

  50. Ciklične konfiguracije • Simetrično (vr) konfiguracijo, ki jo določa prvi stolpec s tabele in dobimo preostale stolpce z zaporednim prištevanjem enice (po izbranem modulu m) imenujemo ciklična konfiguracija: Cyc(m;s). • Na levi sliki je ciklična Fanova konfiguracija Cyc(7;1,2,4) = Cyc(7;0,1,3).

More Related