1 / 1

ISOMER SPECTROSCOPY OF 127 Cd

ISOMER SPECTROSCOPY OF 127 Cd. F.Naqvi, 1,2 M. Górska, 2 L. Cáceres, 2,3 A.Jungclaus, 3 M. Pfützner, 4 H. Grawe, 2 S. Pietri, 2 P. H Regan, 5

mareo
Download Presentation

ISOMER SPECTROSCOPY OF 127 Cd

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ISOMER SPECTROSCOPY OF 127Cd F.Naqvi,1,2 M. Górska,2 L. Cáceres,2,3 A.Jungclaus,3 M. Pfützner,4 H. Grawe,2 S. Pietri,2 P. H Regan,5 D. Rudolph,6 Z. Podolyák,5 K. Andgren,7 T. Beck,2 B. Bednarczyk,2,8 J. Benlliure,9 G. Benzoni,10 A.M. Bruce,11 E. Casarejos,9 B. Cederwall,7 F. Crespi,10 P. Detistov,12 Zs. Dombrádi,13 P. Doornenbal,2 H. Geissel,2 J. Gerl,2 J. Grębosz,2,8 B. Hadinia,7 M. Hellström,6 R. Hoischen,2,6 G. Ilie,1 J.Jolie,1 A. Khaplanov,7 I. Kojouharov,2 M. Kmiecik,8 R. Kumar,14 N. Kurz,2 S. Lalkovski,11,12 A. Maj,8 S. Mandal,15 V. Modamio,3 F. Montes,2 S. Myalski,8 W. Prokopowicz,2 P.Reiter,1 H. Schaffner,2 G. Simpson,16 D.Sohler,13 S.J. Steer,5 S. Tashenov,2 J. Walker,3 H.J. Wollersheim2 & O. Wieland10 1Institut für Kernphysik, Universität zu Köln, D-50937 Köln, Germany. 2Gesellschaft für Schwerionenforschung (GSI), D-64291 Darmstadt, Germany 3Departamento de Física Teórica, Universidad Autónoma de Madrid, E-28049 Madrid, Spain. 4IEP,Warsaw University, PL-00681 Warsaw, Poland. 5Department of Physics, University of Surrey, Guildford, GU2 7XH, UK. 6Department of Physics, Lund University, S-22100 Lund, Sweden. 7KTH Stockholm, S-10691 Stockholm, Sweden.. 8The Henryk Niewodniczański Institute of Nuclear Physics, PL-31342 Kraków, Poland. 9Universidad de Santiago de Compostela, E-175706 Santiago de Compostela, Spain. 10INFN, Universitádegli Studi di Milano and INFN Seizone di Milano,I-20133 Milano, Italy. 11School of Engineering, University of Brighton, Brighton, BN2 4GJ, UK. 12Faculty of Physics, University of Sofia, BG-1164 Sofia, Bulgaria. 13Institute National Polytechnique de Grenoble , F – 98026 Grenoble Cedex , France 14Inter University Accelerator Centre, New Delhi, India. 15University of Delhi, New Delhi, India. 16Institut Laue-Langevin, F-38042 Grenoble, France. MOTIVATION: • 48Cd79 is a neutron rich nucleus which has 3 neutrons and 2 protons • less than the doubly magic 132 Sn . The latter nucleus is a benchmark for • nuclear structure investigations. • Systematics of the Cd isotope chain shows evolution of neutron single particle • energy levels. • The observed neutron single particle evolution helps in determining the • monopole interaction used in SM calculation . • The comparison of theoretical predictions and experimental results provides • a means for understanding the structure of neutron rich isotopes below 132Sn • and possible on-set of collectivity. 127 EXPERIMENTAL TECHNIQUE: • RESULTS: • Singles Gamma Spectra • Five gamma energy transitions were • observed with energies739 keV, 822 keV , 712 keV 849 keV and 111 keV • γ –γ Coincidence Spectra • Life time measurement Bρ-ΔE-Bρ method (Achromatic Mode) FRAGMENT SEPARATOR • 127 Cd was produced both • in fragmentation of 136 Xe • beam @ 750 MeV/u and in • fission of 238U beam @ • 650 MeV/u .The intensities • of the beams were • ~ 7.4 X 108 ions/s and • ~ 2.7 X 108 ions/s • respectively • 9Be targets of thickness • 1g/cm2 and 4g/cm2 were • used for fission and • fragmentation of 238U and • 136Xe beams respectively DIPOLE : Bρ • In achromatic mode the fragments with same A/Q ratio are • focused at the same position on the final focal plane • Z Measurement • Energy loss in two MUlti • Sampling Ionisation Chambers • at S4 • Gamma coincidence spectra gated on • 739 keV TOF : βγ • A/Q Measurement • Time of flight measurement • between scintillators Sc21 at • S2 and Sc42 at S4 Identification plot • Time distribution obtained by summing the • gates at 712 keV, 739 keV, 821 keV, and • 849 keV on the energy vs time matrix • A maximum likelihood fit gives a half life • of T1/2 = 17.5(3) µs Energy and lifetime information from the gamma array • 15 Euroball cluster detectors • with 7 crystals each • Photopeak efficiency ~ 15 % • at 1 MeV RISING gamma array • The decay of yrast (19/2+) isomer was observed in 127Cd. • Based on the measured half-life T1/2 = 17.5(3)µs , primary decay • transitions were assigned to be an E3 of 849 keV and M2/E3 of 739 • keV. • Shell Model calculation predicted the existence of (19/2+) isomer of a similar • half life in 127Cd . A calculation using the E3 strength of the neighbouring • 129Sn isotone gives similar life time supporting the spin assignment . • The energy of 13/2- state ,obtained in Shell Model calculation is too • high compared to the experiment value . Hence, a modification • of the monopole interaction used in the calculation is required. CONCLUSIONS: Proposed level scheme and shell model prediction SM EXP

More Related