330 likes | 372 Views
Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University. Nanophotonics: defined by its applications communications technology lasers solid-state lighting data storage lithography (bio-)sensors
E N D
Nanophotonics Prof. Albert Polman Center for Nanophotonics FOM-Institute AMOLF, Amsterdam Debye Institute, Utrecht University
Nanophotonics: defined by its applications • communications technology • lasers • solid-state lighting • data storage • lithography • (bio-)sensors • optical computers • solar cells • light-activated medical therapies • displays • smart materials Kenniseconomie Large interest from industry in fundamental research on nanophotonics Nanophotonics is a unique part of physics/chemistry/materials science because it combines a wealth of scientific challenges with a large variety of near-term applications.
Decreasing length scales in photonics m km mm nm
Optical fiber kern mantel bescherming
Silica fiber transparent at 1.55 m 1012 Hz 1.3 m 1.55 m
Optical fiber: long distance communication
high index low index Si Planar optical waveguide 1 mm
Photonic integrated circuits on silicon SiO2/Al2O3/SiO2/Si 1 mm Al2O3 technology by M.K. Smit et al., TUD
Optical clock distribution on a Si microprocessor Photonics on silicon Intel Website
Computer interconnects hierarchy Mihail M. Sigalas, Agilent Laboratories, Palo Alto, CA http://www.ima.umn.edu/industrial/2002-2003/sigalas/sigalas.pdf
The world’s smallest erbium-doped optical amplifier 1.53 m signal, 1.48 m pump, 10 mW, gain: 2.3 dB erbium Waveguide spiral size: 1 mm2 minimum bending radius > 50 m
Lanthanide ions as optical dopants H He Li Be B C N O F Ne Na Mg Al SiP S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe Cs Ba La Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn Fr Ra Ac Rf Db Sg Bh Hs Mt Uun Uuu Uub Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No Lr La3+: [Xe] 4f n n=1-14 ….4f n 5s2 5p6
The world’s smallest erbium-doped optical amplifier 1.53 m signal, 1.48 m pump, 10 mW, gain: 2.3 dB erbium Waveguide spiral size: 1 mm2 minimum bending radius > 50 m
From a prototype to a 40 M$ company … Symmorphix Sunnyvale CA, USA
Nanophotonics examples (1) Surface plasmon polaritons Nanocavities Nanoscale energy transfer Field confinement in metal nanoparticle array
4 m Nanophotonics examples (2) W.L. Vos Anomalous transmission through nanohole arrays K. Kuipers Trapping light in photonic crystals M. Verschuuren Plasmonic solar cells Photonic nanowires J. Gomez Rivas
What will you learn in this class?! • Theory of nanophotonics • Applications of nanophotonics • Nanophotonics fabrication techniques • New developments in science and technology • Presentation skills
Class schedule Sept. 5 Class 1 - Resonances and refractive index Sept. 12 Class 2 - Nanoparticle scattering Sept. 19 Class 3 - Surface plasmon polaritons Sept. 26 Tour through Ornstein Lab Oct. 3 No class / homework assistance Oct. 10 Class 4 - Photonic crystals Oct. 17 13.00-15.00 hr. Class 5 - Local density of optical states 16.00 hr. Debye Lecture “Nanobiophotonics” Oct. 24 No class Oct. 31 Excursion to AMOLF-Amsterdam Nov. 7 Class 6 – Rare earth ions and quantum dots Nov. 14 Class 7 - Microcavities Nov. 18 (Tuesday) Visit to Nanoned conference Nov. 21 No class Nov. 28 Class 8 - Near field optics Dec. 5 Class 9 - Nanophotovoltaics Dec. 12 Excursion to Philips Research- Eindhoven Dec. 19 Class 10 - Metamaterials Christmas break Jan. 9 Class 11 – Transformation optics Jan. 16 Nanophotonics summary Jan. 23 Closing symposium
Fabrication technology: • Thin film deposition • Clean room fabrication technology • Lithography • Focused ion beam milling • Colloidal self-assembly • Bio-templating • Characterization technology: • Photoluminescence spectroscopy • Optical absorption/extinction spectroscopy • Near-field microscopy • Cathodoluminescence imaging spectroscopy • Pump-probe spectroscopy • Practical training at Debye Institute & FOM-Institute AMOLF
Weekly schedule • Nanophotonics fundamentals • Fabrication technology • Characterization principles / techniques • Application example • News of the week • Paper/homework presentations • Excursions/labtours • Albert Polman • E-mail: polman@amolf.nl • Website: www.erbium.nl/nanophotonics
Course grading • No final examination • Grades are determined by: • Homework: 60 % • Paper presentation 1: 10% • Paper presentation 2: 15% • Participation in class: 5% • Homework must he handed in on Friday. No exceptions! • Homework grade: average of (all homework – worst made) • Use help by teaching assistants! • Course time 11.00-13.00 • Absence: must be notified
Resonances and optical constants of dielectrics: basic light-matter interaction
Dielectric materials: All charges are attached to specific atoms or molecules Response to an electric field E:Microscopic displacement of charges Macroscopic material properties: electric susceptibility , dielectric constant (or relative dielectric permittivity)
Maxwell’s equations in a medium leading to wave equation:
Solution in vacuum (P = J = 0): • In dielectric material (J = 0): • Consider response of electrons bound to atom nuclei:
Equation of motion of electron: g: damping coefficient for given material k: restoring-force constant resonance frequency assume E is varying harmonically, and also
inserting P in wave equation gives solution: with complex propagation constant kz = + iα : and therefore:
multiple resonances wj for Z electrons per molecule: Where fj is the oscillator strength or (quantum mechanically) the transition probability N is a complex number: