1 / 32

Quick Sort

Quick Sort. Quick Sort. Divide : Pick any element p as the pivot , e.g, the first element Partition the remaining elements into FirstPart, which contains all elements < p SecondPart, which contains all elements ≥ p Recursively sort the FirstPart and SecondPart

marilu
Download Presentation

Quick Sort

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quick Sort

  2. Quick Sort • Divide: • Pick any element p as the pivot, e.g, the first element • Partition the remaining elements into FirstPart,which contains all elements< p SecondPart, which contains all elements ≥ p • Recursively sort the FirstPart and SecondPart • Combine: no work is necessary since sorting is done in place

  3. Partition Recursive call p p p p ≤ x p ≤ x Sorted FirstPart Sorted SecondPart x < p Quick Sort A: pivot FirstPart SecondPart x < p Sorted

  4. Quick Sort Quick-Sort(A, left, right) ifleft ≥ right return else middle ← Partition(A, left, right) Quick-Sort(A, left, middle–1 ) Quick-Sort(A, middle+1, right) end if

  5. p x < p p p ≤ x x < p p ≤ x p Partition A: A: A: p

  6. Partition Example A: 4 8 6 3 5 1 7 2

  7. Partition Example i=0 A: 4 8 6 3 5 1 7 2 j=1

  8. Partition Example i=0 A: 4 8 6 3 5 1 7 2 8 j=1

  9. Partition Example i=0 A: 4 8 6 6 3 5 1 7 2 j=2

  10. i=1 3 8 Partition Example i=0 A: 4 6 3 5 1 7 2 8 3 j=3

  11. i=1 Partition Example A: 4 3 6 8 5 1 7 2 5 j=4

  12. i=1 Partition Example A: 4 3 6 8 5 1 1 7 2 j=5

  13. i=2 1 6 Partition Example A: 4 3 6 8 5 1 7 2 j=5

  14. i=2 Partition Example A: 7 4 3 1 8 5 6 7 2 j=6

  15. i=2 i=3 Partition Example A: 8 2 2 4 3 1 8 5 6 7 2 j=7

  16. i=3 Partition Example A: 4 3 1 2 5 6 7 8 j=8

  17. i=3 Partition Example A: 4 4 3 1 2 5 6 7 8 2

  18. x < 4 4 ≤ x Partition Example pivot in correct position A: 2 4 3 1 5 6 7 8

  19. Partition(A, left, right) • x ← A[left] • i ← left • for j ← left+1 to right • if A[j] < x then • i ← i + 1 • swap(A[i], A[j]) • end if • end for j • swap(A[i], A[left]) • return i n = right – left +1 Time: cn for some constant c Space: constant

  20. 2 3 1 4 5 6 7 8 Quick-Sort(A, 0, 7) Partition A: 4 8 6 3 5 1 7 2

  21. 1 3 2 Quick-Sort(A, 0, 7) , partition Quick-Sort(A, 0, 2) A: 5 6 7 8 4 2 3 1

  22. Quick-Sort(A, 0, 7) Quick-Sort(A, 0, 0) , base case , return 5 6 7 8 4 3 1 2 1

  23. 3 3 Quick-Sort(A, 0, 7) Quick-Sort(A, 1, 1) , base case 5 6 7 8 4 1 2

  24. 1 1 3 3 2 2 Quick-Sort(A, 0, 7) Quick-Sort(A, 0, 2), return Quick-Sort(A, 2, 2),return 5 6 7 8 4

  25. 5 6 7 8 6 7 8 5 1 3 2 Quick-Sort(A, 0, 7) Quick-Sort(A, 4, 7) , partition Quick-Sort(A, 2, 2),return 4

  26. 1 3 2 6 7 8 Quick-Sort(A, 0, 7) Quick-Sort(A, 5, 7) , partition 4 5 6 6 7 8

  27. 1 3 2 Quick-Sort(A, 0, 7) Quick-Sort(A, 6, 7) , partition 4 5 6 7 7 8 8

  28. 1 3 2 Quick-Sort(A, 0, 7) , return , base case Quick-Sort(A, 7, 7) 4 5 6 7 8 8

  29. 1 3 2 Quick-Sort(A, 0, 7) , return Quick-Sort(A, 6, 7) 4 5 6 7 8

  30. 1 3 2 6 7 8 Quick-Sort(A, 0, 7) , return Quick-Sort(A, 5, 7) 4 5

  31. 5 1 3 2 6 7 8 Quick-Sort(A, 0, 7) , return Quick-Sort(A, 4, 7) 4

  32. 5 1 3 2 6 7 8 Quick-Sort(A, 0, 7) , done! Quick-Sort(A, 0, 7) 4

More Related