1 / 32

Basic Resistive Load Circuits

Basic Resistive Load Circuits. Dr. Paul Hasler. V dd. V dd = 5.0V. GND. What is the bias current?. I ref = (2V) / R 1. Basic Resistive Load Circuits. Output Voltage Bias = 3.0V. R 1. R 1. V out. V out. V in. V in. GND. V dd. V dd = 5.0V. GND. Basic Resistive Load Circuits.

marin
Download Presentation

Basic Resistive Load Circuits

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Basic Resistive Load Circuits Dr. Paul Hasler

  2. Vdd Vdd= 5.0V GND What is the bias current? Iref = (2V) / R1 Basic Resistive Load Circuits Output Voltage Bias = 3.0V R1 R1 Vout Vout Vin Vin GND

  3. Vdd Vdd= 5.0V GND Basic Resistive Load Circuits Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Vin Vin GND BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) (2V) / R1 = (K/2) (Vin - VT )2 (2V) / R1 = Ico eVin/UT Vin = VT + sqrt( (4V) / (K R1) ) Vin = UT ln ( (2V) / R1 Ico )

  4. Vdd Vdd= 5.0V GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Have bias Vin Vin Vin GND

  5. V3 + V - V1 rp gmV ro V2 V2 Small-Signal Modeling V3 V3 I I V1 V1 V2 V2 rp gm ro Av BJT (UTb) / I I / UT VA / I VA / UT Above VT MOSFET 2I /(V1-V2 -VT) VA / I 2VA/(V1-V2 -VT)  Sub VT MOSFET kI / UT  VA / I kVA / UT

  6. Vdd Vdd= 5.0V GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V R1 R1 Iref = (2V) / R1 Vout Vout Have bias Vin Vin Vin GND Compute Transconductance (gm) BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) gm = 2I /(Vin -VT) = (4V) / (R1 (Vin -VT) ) gm = I / UT = (2V) / (R1 UT)

  7. Vdd Vdd= 5.0V GND GND Vin Vout + V - gmV R1 rp Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Gain = - gmR1 = - [ (2V) /(R1UT) ] R1 = - (2V) /UT or Gain = -(4V) / (Vin -VT)

  8. Vdd Vdd= 5.0V GND GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Vout Vin Gain = - [(2V) / UT ][1 + (2V)/ VA ] + V - or gmV R1 rp ro Gain = -[(4V)/(Vin -VT)][1 + (2V)/ VA ]

  9. Vdd Vdd= 5.0V GND GND Vin Vout + V - gmV R1 rp Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (2V) / R1 R1 R1 Have bias Vin Vout Vout gm = (2V) / (R1 UT) Vin Vin or GND gm = (4V) / (R1 (Vin -VT) ) Gain = - (2V) /UT or Gain = -(4V) / (Vin -VT) Output Resistance = R1

  10. Common E / S: Resistive Load

  11. Vdd What is the bias current? Iref = (3V) / R1 Follower Circuits Vdd Output Voltage Bias = 3.0V Vin Vin Vout Vout R1 R1 GND GND

  12. Vdd Basic Resistive Load Circuits Vdd Output Voltage Bias = 3.0V Vin Vin Vout Vout Iref = (3V) / R1 R1 R1 GND GND BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) (3V) / R1 = (K/2) (Vin - Vout - VT )2 (3V) / R1 = Ico e(Vin - Vout)/UT Vin = Vout + VT + sqrt((6V)/(KR1)) Vin = Vout + UT ln ( (3V) / R1 Ico )

  13. Vdd Vin Vin Vout Vout R1 R1 GND Vdd GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (3V) / R1 Have bias Vin Compute Transconductance (gm) BJT / Subthreshold VT Above Threshold (Vdd > Vin - VT ) gm = 2I /(Vin –3V - VT) = (6V) / (R1 (Vin - 3V- VT) ) gm = I / UT = (3V) / (R1 UT)

  14. Vdd Vin Vin Vout Vout R1 R1 GND Vdd GND GND GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (3V) / R1 Have bias Vin gm = (3V) / (R1 UT) or gm = (6V) / (R1 (Vin-3V-VT) ) + V - (Vin - Vout ) / rp + (Vin - Vout ) gm = Vout / R1 Vin Vout rp R1 gmV (Vin-Vout )(1 + rp gm) = Vout (rp / R1) Vout/Vin = 1/(1 + [(rp / R1)/(1 + rp gm)])

  15. Vdd Vin Vin Vout Vout R1 R1 GND Vdd GND GND GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (3V) / R1 Have bias Vin gm = (3V) / (R1 UT) or gm = (6V) / (R1 (Vin-3V-VT) ) + V - Vout / Vin = 1 / (1 + [ (rp / R1) / (1 + rp gm)]) Vin Vout rp R1 rp gm = b (large) gmV Vout / Vin = 1 / ( 1 + [ 1 / (R1 gm)] )

  16. Vdd Vin Vin Vout Vout R1 R1 GND Vdd GND GND GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (3V) / R1 Have bias Vin gm = (3V) / (R1 UT) or gm = (6V) / (R1 (Vin-3V-VT) ) + V - Vout / Vin = 1 / (1 + [ 1 / (R1 gm)]) Vin Vout rp Vout / Vin = 1 / (1 + [UT/(3V)]) R1 gmV or Vout / Vin = 1 / (1 + [Vin-3V-VT /(3V)])

  17. Vdd Vin Vin Vout Vout R1 R1 GND Vdd GND GND GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (3V) / R1 Have bias Vin gm = (3V) / (R1 UT) or gm = (6V) / (R1 (Vin-3V-VT) ) + V - Vout/Vin = 1/(1 + [UT/(3V)]) or Vin Vout rp Vout/Vin = 1/(1+[Vin-3V-VT /(3V)]) R1 gmV Output Resistance: Short the input to GND

  18. Vdd Vin Vin Vout Vout R1 R1 GND Vdd GND GND GND GND Small-Signal Model: Common Drain Output Voltage Bias = 3.0V Iref = (3V) / R1 Have bias Vin gm = (3V) / (R1 UT) or gm = (6V) / (R1 (Vin-3V-VT) ) Vout/Vin = 1/(1 + [UT/(3V)]) Vout or Vout/Vin = 1/(1+[Vin-3V-VT /(3V)]) 1/gm rp R1 Rout = (1/gm) / (1 + gm R1) ~ 1/gm

  19. Vdd Vdd What is the bias current? Iref = (1V) / R1 Common Gate: Resistive Load Output Voltage Bias = 4.0V R1 R1 Vout Vout Vb Vb Vin Vin

  20. Common G: Resistive Load

  21. Vdd Vdd Common Gate: Resistive Load Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Vb Vb Vin Vin BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) (1V) / R1 = Ico eVb-Vin/UT (1V) / R1 = (K/2) (Vb - Vin - VT )2 Vin = Vb - VT - sqrt((2V)/(K R1)) Vin = Vb - UT ln ( (1V) / R1 Ico )

  22. Vdd Vdd Common Gate: Small-Signal Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb Vb Vin Vin BJT / Subthreshold VT Above Threshold (Vd > Vg - VT ) gm = 2I /(Vb - Vin -VT) = (2V) / (R1 (Vb - Vin -VT) ) gm = I / UT = (1V) / (R1 UT)

  23. Vdd Vdd GND GND Common Gate: Small-Signal Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb gm = (1V) / (R1 UT) Vb or Vin Vin gm = (2V) / (R1(Vb- Vin-VT) ) Vout Gain = gm R1 + V - R1 rp Gain = (1V) / UT gmV or Vin Gain = (2V) / (Vb- Vin-VT)

  24. Vdd Vdd GND GND Common Gate: Small-Signal Output Voltage Bias = 4.0V R1 R1 Iref = (1V) / R1 Vout Vout Have Input Bias Vb gm = (1V) / (R1 UT) Vb or Vin Vin gm = (2V) / (R1(Vb- Vin-VT) ) Vout Gain = (1V) / UT or Gain = (2V) / (Vb- Vin-VT) + V - R1 rp gmV Vin Output Resistance = R1

  25. Modify gm Vdrain Source Degeneration Vdrain Vin Vin Va Va R1 R1 GND GND

  26. Vdd GND GND Small-Signal Model: Common Drain Vdd + V - Vin Vin Vin Vout Vout rp Vout R1 gmV R1 R1 GND GND Vout / Vin = 1 / ( 1 + [ 1 / (R1 gm)] ) = R1 gm / (1 + R1 gm) R1 << 1/gm R1 >> 1/gm Vout / Vin = (R1 gm) Vout / Vin ~ 1 (Resistor has a small effect) (Resistor sets gm)

  27. Modify gm Vdrain GND R1gm << 1 gm = Vin 1 + R1gm R1gm >> 1 Source Degeneration Vdrain Vdrain ro + V - Vin Vin Vin Va Va Va rp R1 R1 R1 gmV Vdrain GND GND R1 gm Gm: gmV = gm(Vin - Va ) = gm(1 - ) Vin 1 + R1gm (ignore ro here) gmVin Vin /R

  28. Vdrain ro + V - Va rp Modify gm R1 gmV Vdrain Vdrain GND GND Source Degeneration Vdrain Vin Vin Va Va R1 R1 GND GND Gm = 1/R Rout:

  29. Modify gm Vdrain GND small small Source Degeneration Vdrain Vdrain Vdrain gmVa ro Vin Vin Va Va Va rp // R1 R1 R1 GND GND Gm = 1/R Solve for Va: Va / (rp // R1) + gmVa = (Vdrain - Va)/ ro Rout: Va [ro (gm+ (1/(rp // R1)) )] = Vdrain Va = Vdrain /[rogm]

  30. Modify gm Vdrain GND Source Degeneration Vdrain Vdrain Vdrain gmVa ro Vin Vin Va Va Va rp // R1 R1 R1 GND GND Va = Vdrain /[rogm] Gm = 1/R Solve for Current: I = Va / (rp // R1) Rout: I = Vdrain /[rogm(rp // R1)] Rout = rogm(rp // R1)

  31. Modify gm Rin bR1 Vin Vdrain Vdrain small GND Source Degeneration Rin: (conductance is zero for a MOSFET) Vdrain Vin Vin “Reflect R1 through the base” Va Va R1 R1 GND GND Gm = 1/R Rout = rogm(rp // R1) Rin = bR1 + rp = b R1(1 + (1/(gmR1) ) ) Rin = b R1

  32. Modify gm Vdrain GND Source Degeneration Vdrain Vin Vin Vin Vdrain + V - Va Va GmV Rin Rout R1 R1 GND GND Gm = 1/R Voltage Gain: Gm Rout = rogm(1 // (R1/rp ) ) Rout = rogm(rp // R1) Rin = b R1

More Related