1 / 9

Susy analysis with SUSYView & PyRoot

Susy analysis with SUSYView & PyRoot. Jamie Boyd, Amir Farbin, Till Eifert. SUSYView (v7) datasets at CERN. T1 ToplnlnNp0 ToplnlnNp1 ToplnlnNp2 tokyoWjetNp0 tokyoWjetNp1 tokyoWjetNp2 tokyoWjetNp3 tokyoWjetNp4 tokyoWjetNp5 tokyoZeeNp3 tokyoZeeNp4 tokyoZeeNp5 tokyoZmmNp3 tokyoZmmNp4

maris
Download Presentation

Susy analysis with SUSYView & PyRoot

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Susy analysis with SUSYView & PyRoot Jamie Boyd, Amir Farbin, Till Eifert

  2. SUSYView (v7) datasets at CERN • T1 • ToplnlnNp0 • ToplnlnNp1 • ToplnlnNp2 • tokyoWjetNp0 • tokyoWjetNp1 • tokyoWjetNp2 • tokyoWjetNp3 • tokyoWjetNp4 • tokyoWjetNp5 • tokyoZeeNp3 • tokyoZeeNp4 • tokyoZeeNp5 • tokyoZmmNp3 • tokyoZmmNp4 • tokyoZmmNp5 • tokyoZnunuNp0 • tokyoZnunuNp1 • tokyoZnunuNp2 • tokyoZnunuNp3 • tokyoZnunuNp4 • tokyoZnunuNp5 • J4 • J5 • J6 • J7 • J8 • SU1 • SU2 • SU3 • SU8_1 • SU8_2 • SU8_3 • WenuNp2 • WenuNp3 • WenuNp4 • WenuNp5 • WmunuNp3 • WmunuNp4 • WmunuNp5 • WtaunuNp2 • WtaunuNp3 • WtaunuNp4 • WtaunuNp5 • ZnunuNp3 • ZnunuNp4 • ZnunuNp5

  3. Analysis in PyRoot • Python classes • Sample • CombinedSample (for instance all Ws) • SampleHandler (to load easily ntuples) • TTreeAlgorithm, TTreeLooper, … • ResultHandler • pickleResults

  4. Analysis in PyRoot II • Typically, I do • Running the analysis • Load all root samples into python • Define my analysis consisting of algorithms • Cuts, Histos, writing to new ntuple • Run my analysis over all samples • “Pickle” the transient results to root-files • Looking at the results • “Pickle” root-files to transient objects • Look at cut efficiencies • Combine DataSets via CombinedSample • Compare histos of different Samples …

  5. Simple susy analysis • Algos • Cut: NJet > 3 • Cut MET > 100 GeV • Jets p_T > 100, 100, 50, 50 GeV • Make some Histos (Meff, MET, p_T, …) • Not used here, but already tested • transMass cut • Sphericity cut • Algo that writes the new ntuples (having all active branches + new variables)

  6. Nice plots (norm. to 1 fm-1)

  7. Cut efficiencies Sample: SU3Reco • Cut: 4JetsCut -> Eff: 0.69 err: 0.001 • Cut: METCut -> Eff: 0.88 err: 0.0009 • Cut: JetCutAlgo -> Eff: 0.47 err: 0.001 Final Cut Effc: 0.29 err: 0.001 exp. evts. (after cuts): 5654.1 err: 5.9 Note: no MT cut was used!

  8. Short term items – 1 week • Compare plots & efficiencies to other people’s susy analysis (also making use of the Tokyo datasets) using the same cuts • In particular look at eff for different lepton, MT, sphericity cuts for signal/background • Look at supposedly better MET cut -> MET significance • Compare SUSY groups vs Tokyo backgrounds

  9. Other items • Run analysis over grid of signal, look at e.g. average NJet in 2D hist • Implement Calculation of Significance • Implement use of TMVA • Run grid production with 12.0.?; run SUSYView with 12.0.? once dataSets arrive • Compare in 12.0.? AtlFast vs FullReco

More Related