240 likes | 422 Views
Shien Jin Ong. Minh Nguyen. Statistical Zero-Knowledge Arguments for NP from Any One-Way Function. Salil Vadhan. Harvard University. Assumptions for Cryptography. One-way functions ) Pseudorandom generators [Hastad-Impagliazzo-Levin-Luby] .
E N D
Shien Jin Ong Minh Nguyen Statistical Zero-Knowledge Arguments for NPfrom Any One-Way Function Salil Vadhan Harvard University
Assumptions for Cryptography • One-way functions ) • Pseudorandom generators [Hastad-Impagliazzo-Levin-Luby]. • Pseudorandom functions & private-key cryptography[Goldreich-Goldwasser-Micali] • Commitment schemes [Naor]. • Zero-knowledge proofs for NP [Goldreich-Micali-Wigderson]. • Digital signatures [Rompel]. • Almost all cryptographic tasks ) one-way functions.[Impagliazzo-Luby, Ostrovsky-Wigderson] • Some tasks not “black-box reducible” to one-way fns. • Public-key encryption [Impagliazzo-Rudich] • Collision-resistant hashing [Simon]
Main Result One-Way Functions )Statistical Zero-Knowledge Arguments for NP • Resolves an open problem posed by [Naor-Ostrovsky-Venkatesan-Yung92]. • OWF is essentially the minimal complexity assumption for ZK [Ostrovsky-Wigderson].
Notions of Zero Knowledge [Goldwasser-Micali-Rackoff] Verifier learnsnothing Zero Knowledge • statistical • computational Soundness • statistical (proofs) • computational (arguments)[Brassard-Chaum-Crepeau] Completeness Prover cannot convince Verifier offalse statements
Notions of Zero Knowledge [Goldwasser-Micali-Rackoff] Verifier learnsnothing Zero Knowledge • statistical • computational Soundness • statistical (proofs) • computational (arguments)[Brassard-Chaum-Crepeau] Prover cannot convince Verifier offalse statements Thm [Fortnow,Aiello-Hastad]: Only languages in AMÅ co-AM have statistical ZK proofs.
Notions of Zero Knowledge [Goldwasser-Micali-Rackoff] Verifier learnsnothing Zero Knowledge • statistical • computational Soundness • statistical (proofs) • computational (arguments)[Brassard-Chaum-Crepeau] Prover cannot convince Verifier offalse statements Thm [1980’s]: one-way functions ) all of NP has computational ZK proofs.
Notions of Zero Knowledge [Goldwasser-Micali-Rackoff] Verifier learnsnothing Zero Knowledge • statistical • computational Soundness • statistical (proofs) • computational (arguments)[Brassard-Chaum-Crepeau] Prover cannot convince Verifier offalse statements Thm [today]: one-way functions ) all of NP has statistical ZK arguments.
Zero Knowledge for NP computational zero-knowledge proofs CommitmentSchemes One-WayFunctions ZK for NP [Hastad- Impagliazzo-Levin-Luby], [Naor] [Goldreich-Micali-Wigderson]
Commitment Schemes Polynomial time algorithm Com(b; K) s.t. • HidingFor random K, Com(0; K) ¼ Com(1; K) • BindingCom(b; K) cannot be opened to b’, where b’ b. b2{0,1} S R K Ã {0,1}* Commit:c = Com(b;K) Reveal: (b,K)
1 2 6 3 5 4 (1,4) Zero Knowledge for NP:Graph 3-Coloring Protocol [Goldreich-Micali-Wigderson] P V 1. Randomly permutecoloring & commit to colors. 2. Pick random edge. 3. Send keys forendpoints. 4. Accept if colors different. Completeness: Graph 3-colorable ) V always accepts.
1 2 6 3 5 4 (1,4) Zero Knowledge for NP:Graph 3-Coloring Protocol [Goldreich- Micali-Wigderson] P V 1. Randomly permutecoloring & commit to colors. 2. Pick random edge. 3. Send keys forendpoints. 4. Accept if colors different. Soundness: Graph not 3-colorable ) V rejects w.p. ¸ 1/(# edges) because commitment binding
1 2 6 3 5 4 (1,4) Zero Knowledge for NP:Graph 3-Coloring Protocol [Goldreich- Micali-Wigderson] P V 1. Randomly permutecoloring & commit to colors. 2. Pick random edge. 3. Send keys forendpoints. 4. Accept if colors different. Zero knowledge: Graph 3-colorable ) Verifier learns nothing because commitment hiding
Zero Knowledge for NP computational zero-knowledge proofs computationally hiding,statistically binding CommitmentSchemes One-WayFunctions ZK for NP [Hastad- Impagliazzo-Levin-Luby], [Naor] [Goldreich-Micali-Wigderson]
Zero Knowledge for NP statistical zero-knowledge arguments statistically hiding,computationally binding ??? CommitmentSchemes One-WayFunctions ZK for NP [Brassard-Chaum- Crepeau]
[NY] collision-resistanthash functions Complexity of SZK Arguments for NP stat. hidingcomp. bindingcommitments number-theoreticassumptions [BCC] [BCC] SZK arguments [GK] [GMR,BKK] claw-free perm [GMR, Damgard]
[NY] collision-resistanthash functions Complexity of SZK arguments for NP stat. hidingcomp. bindingcommitments number-theoreticassumptions [BCC] [BCC] SZK arguments [GK] [GMR,BKK] claw-free perm [NOVY 92] [HHK+ 05] one-way perm regular OWF
Complexity of SZK arguments for NP stat. hidingcomp. bindingcommitments number-theoreticassumptions [BCC] [BCC] SZK arguments [GK] [GMR,BKK] claw-free perm [NOVY 92] [NY] [HHK+ 05] one-way perm collision-resistanthash functions regular OWF one-way function
Complexity of SZK Arguments for NP stat. hidingcomp. bindingcommitments number-theoreticassumptions [BCC] [BCC] SZK arguments [GK] [GMR,BKK] claw-free perm [NOVY 92] [NY] [HHK+ 05] one-way perm collision-resistanthash functions regular OWF stat. hiding1-out-of-2 comp. bindingcommitments one-way function
1-out-of-2 binding commitments [Nguyen-Vadhan06] • Commitment in 2 phases. • Statistically hiding in both phases. • Computational binding in at least one phase. Phase 1 commit:c = Com(1)(b;K) S R Phase 1 reveal: (b,K) Phase 2 commit:c’ = Com(2)(b’;K’) Phase 2 reveal: (b’,K’)
Zero Knowledge for NP statistical zero-knowledge arguments statistically hiding, 1-out-of-2 binding Main Thm CommitmentSchemes One-WayFunctions ZK for NP [Nguyen- Vadhan06]
Overview of our constructionfrom one-way functions stat hiding 1-out-of-2binding StatisticalZK argumentfor NP One-wayfunction (1/n)-hiding 1-out-of-2binding (1)-hiding 1-out-of-2binding
OWF ) (1/n)-hiding • Starting Point:OWF w/ “approximable preimage size” ) stat. hiding commitments [HHK+05] • Idea: sender “guess” preimage size) hiding w.p. 1/n • Problem: sender sends overestimate. • Solution:use second phase to “prove” estimate correct [NV06] • Main tool: interactive hashing [OVY]
(1/n)-hiding )(1)-hiding • Amplify in O(log n) stages • Each time -hiding 2-hiding • Inspired by [Reingold05,Dinur06] • Each Stage • O(1) repetitions of basic protocol • Combine using interactive hashing [OVY] • Analyze with nonstandard measures.
Future Work • Standard statistically hiding commitments from OWF. • Useful for verifier commitments. • Many applications beyond ZK. • Better (sub-polynomial) round complexity • Open even for one-way permutations [NOVY]. • Simplify the construction.