350 likes | 441 Views
Grids Web Services The Global Operating system of the World Its Killer Applications. February 28 2005 Geoffrey Fox Community Grids Lab Indiana University gcf@indiana.edu. e-Infrastructure.
E N D
Grids Web ServicesThe Global Operating system of the WorldIts Killer Applications February 28 2005 Geoffrey Fox Community Grids Lab Indiana University gcf@indiana.edu
e-Infrastructure • e-Infrastructure builds on the inevitable increasing performance of networks and computers linking them together to support new flexible linkages between computers, data systems and people • Grids and peer-to-peer networks are the technologies that build e-Infrastructure • e-Infrastructure called CyberInfrastructure in USA • We imagine a sea of conventional local or global connections supported by the “ordinary Internet” • Phones, web page accesses, plane trips, hallway conversations • Conventional Internet technology manages billions of broadcast or low (one client to Server) or broadcast links • On this we superimpose high value multi-way organizations (linkages) supported by Grids with optimized resources and system support and supporting virtual (electronic) enterprises • Low multiplicity fully interactive real-time sessions • Resources such as databases supporting (larger) communities
PortalService Security Catalog A typical Web Service • In principle, services can be in any language (Fortran .. Java .. Perl .. Python) and the interfaces can be method calls, Java RMI Messages, CGI Web invocations, totally compiled away (inlining) • The simplest implementations involve XML messages (SOAP) and programs written in net friendly languages like Java and Python PaymentCredit Card Web Services WSDL interfaces Warehouse Shipping control WSDL interfaces Web Services
Services and Distributed Objects • A web service is a computer program running on either the local or remote machine with a set of well defined interfaces (ports) specified in XML (WSDL) • Web Services (WS) have many similarities with Distributed Object (DO) technology but there are some (important) technical and religious points (not easy to distinguish) • CORBA Java COM are typical DO technologies • Agents are typically SOA (Service Oriented Architecture) • Both involve distributed entities but Web Services are more loosely coupled • WS interact with messages; DO with RPC (Remote Procedure Call) • DO have “factories”; WS manage instances internally and interaction-specific state not exposed and hence need not be managed • DO have explicit state (statefull services); WS use context in the messages to link interactions (statefull interactions) • Claim: DO’s do NOT scale; WS build on experience (with CORBA) and do scale
Philosophy of Web Service Grids • Much of Distributed Computing was built by natural extensions of computing models developed for sequential machines • This leads to the distributed object (DO) model represented by Java and CORBA • RPC (Remote Procedure Call) or RMI (Remote Method Invocation) for Java • Key people think this is not a good idea as it scales badly and ties distributed entities together too tightly • Distributed Objects Replaced by Services • Note CORBA was considered too complicated in both organization and proposed infrastructure • and Java was considered as “tightly coupled to Sun” • So there were other reasons to discard • Thus replace distributed objects by services connected by “one-way” messages and not by request-response messages
Web services • Web Services build loosely-coupled, distributed applications, (wrapping existing codes and databases) based on the SOA (service oriented architecture) principles. • Web Services interact by exchanging messages in SOAP format • The contracts for the message exchanges that implement those interactions are described via WSDL interfaces.
What is a Grid? • You won’t find a clear description of what is Grid and how does differ from a collection of Web Services • I see no essential reason that Grid Services have different requirements than Web Services • Geoffrey Fox, David Walker, e-Science Gap Analysis, June 30 2003. Report UKeS-2003-01, http://www.nesc.ac.uk/technical_papers/UKeS-2003-01/index.html. • Notice “service-building model” is like programming language – very personal! • Grids were once defined as “Internet Scale Distributed Computing” but this isn’t good as Grids depend as much if not more on data as well as simulations • So Grids can be termed “Internet Scale Distributed Services” and represent a way of collecting services together to solve problems where special features and quality of service needed.
Community Resources • Grid Community databases have analogy to Television and the News Web that allow individuals to communicate instantly with each other via Web Pages and Headline News acting as proxies • N resources deposit information and N can view – Complexity O(N)
Large and Small Grids • N resources in a community (N is billions for the world and 1000-10000 for many scientific fields) • Communities are arranged hierarchically with real work being done in “groups” of M resources – M could be 10-100 in e-Science • Metcalfe’s law: value of network grows like square of number of nodes M – we call Grids where this true Metcalfe or M2 Grids • Nature of Interaction depends on size of M or N • Shared Information O(N) Complexity Grids for largish N • Complexity M2 Metcalfe Grids for smaller M < N • Grids must merge with peer-to-peer networks to support both Complexity O(N) and M2 Systems
M2Interactions • Superimpose M2 “Grids” on the sea (heatbath) of O(N) “ordinary” interactions
Architecture of (Web Service) Grids • Grids built from Web Services communicating through an overlay network built in SOFTWARE on the “ordinary internet” at the application level • Grids provide the special quality of service (security, performance, fault-tolerance) and customized services needed for “distributed complex enterprises” • We need to work with Web Service community as they debate the 60 or so proposed Web Service specifications • Use Web Service Interoperability WS-I as “best practice” • Must add further specifications to support high performance • Database “Grid Services” for O(N) Community case • Streaming support for M2case
Web Services WS-* • Java is very powerful partly due to its many “frameworks” that generalize libraries e.g. • Java Media Framework • Java Database Connectivity JDBC • Web Services have a correspondingly collections of specifications that represent critical features of the distributed operating systems for “Grids of Simple Services” • Some 60 active WS-* specifications for areas such as • a. Core Infrastructure Specifications • b. Service Discovery • c. Security • d. Messaging • e. Notification • f. Workflow and Coordination • g. Characteristics • h. Metadata and State • i. User Interfaces
A List of Web Services I • a) Core Service Architecture • XSD XML Schema (W3C Recommendation) V1.0 February 1998, V1.1 February 2004 • WSDL 1.1 Web Services Description Language Version 1.1, (W3C note) March 2001 • WSDL 2.0 Web Services Description Language Version 2.0, (W3C under development) March 2004 • SOAP 1.1 (W3C Note) V1.1 Note May 2000 • SOAP 1.2 (W3C Recommendation) June 24 2003 • b) Service Discovery • UDDI(Broadly Supported OASIS Standard) V3 August 2003 • WS-Discovery Web services Dynamic Discovery (Microsoft, BEA, Intel …) February 2004 • WS-ILWeb Services Inspection Language, (IBM, Microsoft) November 2001
A List of Web Services II • c) Security • SAMLSecurity Assertion Markup Language (OASIS) V1.1 May 2004 • XACML eXtensible Access Control Markup Language (OASIS) V1.0 February 2003 • WS-Security 2004 Web Services Security: SOAP Message Security (OASIS) Standard March 2004 • WS-SecurityPolicy Web Services Security Policy (IBM, Microsoft, RSA, Verisign) Draft December 2002 • WS-TrustWeb Services Trust Language (BEA, IBM, Microsoft, RSA, Verisign …) May 2004 • WS-SecureConversation Web Services Secure Conversation Language (BEA, IBM, Microsoft, RSA, Verisign …) May 2004 • WS-FederationWeb Services Federation Language (BEA, IBM, Microsoft, RSA, Verisign) July 2003
A List of Web Services III • d) Messaging • WS-Addressing Web Services Addressing (BEA, IBM, Microsoft) March 2004 • WS-MessageDelivery Web Services Message Delivery (W3C Submission by Oracle, Sun ..) April 2004 • WS-Routing and Referral SOAP Routing Protocol (Microsoft) October 2001 • WS-RM Web Services Reliable Messaging (BEA, IBM, Microsoft, Tibco) v0.992 March 2004 • WS-Reliability Web Services Reliable Messaging (OASIS Web Services Reliable Messaging TC) March 2004 • SOAP MOTM SOAP Message Transmission Optimization Mechanism (W3C) June 2004 • e) Notification • WS-Eventing Web Services Eventing (BEA, Microsoft, TIBCO) January 2004 • WS-Notification Framework for Web Services Notification with WS-Topics, WS-BaseNotification, andWS-BrokeredNotification (OASIS) OASIS Web Services Notification TC Set up March 2004 • JMSJava Message Service V1.1 March 2002
A List of Web Services IV • f) Coordination and Workflow, Transactions and Contextualization • WS-CAFWeb Services Composite Application Framework including WS-CTX, WS-CFandWS-TXM below (OASIS Web Services Composite Application Framework TC) July 2003 • WS-CTXWeb Services Context (OASIS Web Services Composite Application Framework TC) V1.0 July 2003 • WS-CF Web Services Coordination Framework (OASIS Web Services Composite Application Framework TC) V1.0 July 2003 • WS-TXM Web Services Transaction Management (OASIS Web Services Composite Application Framework TC) V1.0 July 2003 • WS-Coordination Web Services Coordination (BEA, IBM, Microsoft) September 2003 • WS-AtomicTransaction Web Services Atomic Transaction (BEA, IBM, Microsoft) September 2003 • WS-BusinessActivity Web Services Business Activity Framework (BEA, IBM, Microsoft) January 2004 • BTP Business Transaction Protocol (OASIS) May 2002 with V1.0.9.1 May 2004 • BPEL Business Process Execution Language for Web Services (OASIS) V1.1 May 2003 • WS-Choreography (W3C) V1.0 Working Draft April 2004 • WSCI (W3C) Web Service Choreography Interface V1.0 (W3C Note from BEA, Intalio, SAP, Sun, Yahoo) • WSCLWeb Services Conversation Language (W3C Note) HP March 2002
A List of Web Services V • h) Metadata and State • RDFResource Description Framework (W3C) Set of recommendations expanded from original February 1999 standard • DAML+OIL combining DAML (Darpa Agent Markup Language) and OIL (Ontology Inference Layer) (W3C) Note December 2001 • OWLWeb Ontology Language (W3C) Recommendation February 2004 • WS-DistributedManagement Web Services Distributed Management Framework with MUWS and MOWS below (OASIS) • WSDM-MUWS Web Services Distributed Management: Management Using Web Services (OASIS) V0.5 Committee Draft April 2004 • WSDM-MOWS Web Services Distributed Management: Management of Web Services (OASIS) V0.5 Committee Draft April 2004 • WS-MetadataExchange Web Services Metadata Exchange (BEA,IBM, Microsoft, SAP) March 2004 • WS-RFWeb Services Resource Framework including WS-ResourceProperties, WS-ResourceLifetime, WS-RenewableReferences, WS-ServiceGroup, and WS-BaseFaults(OASIS) Oasis TC set up April 2004 and V1.1 Framework March 2004 • ASAP Asynchronous Service Access Protocol (OASIS) with V1.0 working draft G June 2004 • WS-GAFWeb Service Grid Application Framework (Arjuna, Newcastle University) August 2003
A List of Web Services VI • g) General Service Characteristics • WS-Policy Web Services Policy Framework (BEA, IBM, Microsoft, SAP) May 2003 • WS-PolicyAssertionsWeb Services Policy Assertions Language (BEA, IBM, Microsoft, SAP) May 2003 • WS-Agreement Web Services Agreement Specification (GGF under development) May2004 • i) User Interfaces • WSRP Web Services for Remote Portlets (OASIS) OASIS Standard August 2003 • JSR168: JSR-000168 Portlet Specification for Java binding (Java Community Process) October 2003
A List of Web Services VII • j) Recent Updates ………………… • WS-Eventing important update of this notification specification with IBM, Sun and others joining Microsoft et al. as authors • WS-Enumeration supporting the splitting of a single entity (file or stream) into multiple messages • WS-Transfer supporting the creation, update (by get or put) or deletion of a resource • WS-Management competes with WS-DM to provide a Web Service to manage resources • WS-PolicyAttachment describes how to associate policies with UDDI and Endpoints and how to integrate with WSDL • WS-DAI is a Web Service of the OGSA-DAI Grid linkage with databases • WS-CIM is a Web Service rendering from DMTF (Distributed Management Task Force) of the industry standard CIM (Common Information Model) of metadata for computer devices • The WS-* implicitly define an architecture
Database Database Event/MessageBrokers Event/MessageBrokers Event/MessageBrokers Peer to Peer Grid Peers Service FacingWeb Service Interfaces Peers User FacingWeb Service Interfaces A democratic organization Peer to Peer Grid
Importance of SOAP • SOAP defines a very obvious message structure with a header and a body • The header contains information used by the “Internet operating system” • Destination, Source, Routing, Context, Sequence Number … • The message body is partly further information used by the operating system and partly information for application when it is not looked at by “operating system” except to encrypt, compress it etc. • Note WS-Security supports separate encryption for different parts of a document • Much discussion in field revolves around what is referenced in header! • e.g. WSRF adds a lot to header
WS-……..Handler WS-RMHandler Deployment Issues for “System Services” • “System Services” are ones that act before the real application logic of a service • They gobble up part of the SOAP header identified by the namespace they care about and possibly part or all of the SOAP body • e.g. the XML elements in header from the WS-RM namespace • They return a modified SOAP header and body to next handler in chain Header Body e.g. ……. Could be WS-Eventing WS-Transfer ….
Messaging Process SOAPBody Header Process SOAPHeader Body Messaging Structure • Communication Services are messaging (transport protocol, routing) using SOAP protocol Service itself Serviceitself Customizable HandlerChain processesSOAP Header Invoke Other Services from Header or Body
Application Specific Grids Generally Useful Services and Grids Workflow WSFL/BPEL Service Management (“Context etc.”) Service Discovery (UDDI) / Information Service Internet Transport Protocol Service Interfaces WSDL Higher Level Services ServiceContext ServiceInternet Base Hosting Environment Protocol HTTP FTP DNS … Presentation XDR … Session SSH … Transport TCP UDP … Network IP … Data Link / Physical Bit level Internet (OSI Stack) Layered Architecture for Web Services and Grids
Working up from the Bottom • We have the classic (CISCO, Juniper ….) Internet routing the flood of ordinary packets in OSI stack architecture • Web Services build the “Service Internet” or IOI (Internet on Internet) with • Routing via WS-Addressing not IP header • Fault Tolerance (WS-RM not TCP) • Security (WS-Security/SecureConversation not IPSec/SSL) • Data Transmission by WS-Transfer not HTTP • Information Services (UDDI/WS-Context not DNS/Configuration files) • At message/web service level and not packet/IP address level • Software-based Service Internet possible as computers “fast” • Familiar from Peer-to-peer networks and built as a software overlay network defining Grid (analogy is VPN) • SOAP Header contains all information needed for the “Service Internet” (Grid Operating System) with SOAP Body containing information for Grid application service
Consequences of Rule of the Millisecond • Useful to remember critical time scales • 1) 0.000001 ms – CPU does a calculation • 2a) 0.001 to 0.01 ms – Parallel Computing MPI latency • 2b) 0.001 to 0.01 ms – Overhead of a Method Call • 3) 1 ms – wake-up a thread or process • 4) 10 to 1000 ms – Internet delay • 2a), 4) implies geographically distributed metacomputing can’t in general compete with parallel systems • 3) << 4) implies a software overlay network is possible without significant overhead • We need to explain why it adds value of course! • 2b) versus 3) and 4) describes regions where method and message based programming paradigms important
Closely coupled Java/Python … Coarse Grain Service Model Service B Service A Module B Module A Messages Service B Service A 0.1 to 1000 millisecond latency Method Calls.001 to 1 millisecond Linking Modules • From method based to RPC to message based to event-based publish-subscribe Message Oriented Middleware “Listener”Subscribe to Events Publisher Post Events Message Queue in the Sky
What is a Simple Service? • Take any system – it has multiple functionalities • We can implement each functionality as an independent distributed service • Or we can bundle multiple functionalities in a single service • Whether functionality is an independent service or one of many method calls into a “glob of software”, we can always make them as Web services by converting interface to WSDL • Simple services are gotten by taking functionalities and making as small as possible subject to “rule of millisecond” • Distributed services incur messaging overhead of one (local) to 100’s (far apart) of milliseconds to use message rather than method call • Use scripting or compiled integration of functionalities ONLY when require <1 millisecond interaction latency • Apache web site has many projects that are multiple functionalities presented as (Java) globs and NOT (Java) Simple Services • Makes it hard to integrate sharing common security, user profile, file access .. services
CPUs Clusters Compute Resource Grids Overlay and Compose Grids of Grids MPPs Methods Services Component Grids Federated Databases Databases Data Resource Grids Sensor Sensor Nets Grids of Grids of Simple Services • Link via methods messages streams • Services and Grids are linked by messages • Internally to service, functionalities are linked by methods • A simple service is the smallest Grid • We are familiar with method-linked hierarchyLines of Code Methods Objects Programs Packages
Component Grids? • So we build collections of Web Services which we package as component Grids • Visualization Grid • Sensor Grid • Utility Computing Grid • Person (Community) Grid • Earthquake Simulation Grid • Control Room Grid • Crisis Management Grid • We build bigger Grids by composing component Grids using the Service Internet
Gas CIGrid Flood CIGrid … … Gas Servicesand Filters Flood Servicesand Filters Electricity CIGrid Portals Collaboration Grid Visualization Grid Sensor Grid GIS Grid Compute Grid Data Access/Storage Registry Metadata Core Grid Services Physical Network Security Notification Workflow Messaging Critical Infrastructure (CI) Grids built as Grids of Grids
USArray Seismic Sensors
a Site-specific Irregular Scalar Measurements a Constellations for Plate Boundary-Scale Vector Measurements Ice Sheets a Volcanoes PBO Greenland Long Valley, CA Topography 1 km Stress Change Northridge, CA Earthquakes Hector Mine, CA
Field Trip Data ? GISGrid Discovery Services RepositoriesFederated Databases Streaming Data Sensors Database Database Sensor Grid Database Grid Research Education SERVOGrid Compute Grid Customization Services From Researchto Education Data FilterServices ResearchSimulations Analysis and VisualizationPortal EducationGrid Computer Farm Geoscience Research and Education Grids