380 likes | 390 Views
This study focuses on characterizing the observing conditions of the Dark Energy Survey and their impact on galaxy clustering measurements. Survey property maps are used to identify spatial correlations and quantify the significance of these maps. An iterative process is implemented to mitigate systematic effects and assign weights to the galaxy catalogue.
E N D
LargeScaleStructureSystematics: weightsfromobservingconditionmaps Martín Rodríguez Monroy in collaborationwith Jack Elvin-Poole and Aurelio Carnero VII Meeting on Fundamental Cosmology, Madrid, Spain. 11 September 2019
Dark Energy Survey • DECam: 62 CCDs in an hexagonal pattern () • 5 photometricbands: () • Depth • Photometricredshifts, up to Victor Blanco Telescope, 4m, Cerro Tololo, Chile
Dark Energy Survey • DECam: 62 CCDs in an hexagonal pattern () • 5 photometricbands: () • Depth • Photometricredshifts, up to Victor Blanco Telescope, 4m, Cerro Tololo, Chile • SV: • Y1: • Y3/Y5-Y6: • Observingfrom 2013 to 2019 • SurveyingDark Energy with 4 probes: • LargeScaleStructure • Weaklensing • Supernovae • ClusterCounts 1/8 oftheskyobserved
SurveyPropertymaps (SPs) (M. Crocce et al., arXiv:1507.05360) Effectiveexposure time, z-band Effectiveexposure time, z-band Observingconditions(seeing, exposure time, …) haveanimpact in theclusteringsignalofthegalaxies This non-cosmologicalsignal can biasourmeasurements How can wecharacterizetheobservingconditions? -> SurveyPropertymaps (SPs) SP = healpixmapthatkeepstrackofthespatialvariationof a certainstatisticconcerningtheimagingconditionsofthesurveyacrossthesky Assume
SurveyPropertymaps (SPs) • DES Y3 -> 4 photometric bands x 25 SPs + 1 extinction map + 1 stellar density map = 102 SPs • Some of these maps correspond to the same physical quantity derived using different statistics for the stacked images: minimum, maximum, weighted averaged mean or sum of the quantity among all the contributing images • In other cases, a map is a function of other SPs, e.g., the depth maps • This means that many of these SP maps will be strongly correlated -> we can reduce their number by studying their spatial correlations at first • This previous study is performed per photometric band separately. Correlations between bands will be dealt with later by our pipeline
SurveyPropertymaps (SPs) • Pearson’s correlationcoefficient, , helpstoidentifythese “families” ofSPs • Italsoallowstoidentifycorrelationsbetweenothermaps • Set differentcutsfor • Wefixto define a family. When posible, wetaketheweightedaveraged mean as representative • 102 SPs -> 34 SPs 0.7 -0.7
Systematicsmitigation: definitions • How can wequantifytheimpactoftheSPsonthe data? -> Relationbetweenthegalaxy numberdensity () at eachregionofthesky and theSP mapvaluethere • Goal: determine whethertheimpactissignificant and mitigateit • Ifsignificant, how do wemitigateit? -> Weightingthe data Simulations Data Beforeweighting Beforeweighting
Systematicsmitigation: definitions • How can wequantifytheimpactoftheSPsonthe data? -> Relationbetweenthegalaxy numberdensity () at eachregionofthesky and theSP mapvaluethere • Goal: determine whethertheimpactissignificant and mitigateit • Ifsignificant, how do wemitigateit? -> Weightingthe data Simulations Data After weighting After weighting
Systematicsmitigation: definitions Determine thesignificanceofthe SP signal: : fit to : fit to Model: Define
Systematicsmitigation: definitions Effectiveexposure time, z-band
Systematicsmitigation: definitions Effectiveexposure time, z-band However, thistellsnothingaboutthesignificanceofthissignal. WeneedrealizationsoftheUniversetocheckthis
Systematicsmitigation: definitions 1000 Effectiveexposure time, z-band Define oursignificance:
Systematicsmitigation: iterativeprocess (J. Elvin-Poole et al., arXiv:1708.01536) • In ordertoremovethesystematicimpact, aniterativeprocessis run. Firstofall, wemust: • Calculatethesignificanceofeach SP • Set a thresholdforthesignificance • SorttheSPsfromhighesttolowestsignificance and identifythe SP withhighestoneoverthethreshold
Systematicsmitigation: iterativeprocess Mostsignificant SP = Eff. exp. time-z
Systematicsmitigation: iterativeprocess • Fit to • Define theweight • Applytheweightmaptothe Galaxy catalogue: • Iterative process: • Compute againthe SP significances and sortthemfromhighesttolowest • SP with? -> Go back to 1, 2 and 3 • RepeatuntilallSPshavesignificanceunderthresholdormax. numberofiterationsreached
Systematicsmitigation: iterativeprocess • Fit to • Define theweight • Applytheweightmaptothe Galaxy catalogue: • Iterative process: • Compute againthe SP significances and sortthemfromhighesttolowest • SP with? -> Go back to 1, 2 and 3 • RepeatuntilallSPshavesignificanceunderthresholdormax. numberofiterationsreached
Systematicsmitigation: iterativeprocess • Fit to • Define theweight • Apply theweightmaptothe Galaxy catalogue: • Iterative process: • Compute againthe SP significances and sortthemfromhighesttolowest • SP with? -> Go back to 1, 2 and 3 • RepeatuntilallSPshavesignificanceunderthresholdormax. numberofiterationsreached
Systematicsmitigation: iterativeprocess • Fit to • Define theweight • Applytheweightmaptothe Galaxy catalogue: • Iterativeprocess: • Compute againthe SP significances and sortthemfromhighesttolowest • SP with? -> Go back to 1, 2 and 3 • RepeatuntilallSPshavesignificanceunderthresholdormax. numberofiterationsreached
Systematicsmitigation: iterativeprocess • Fit to • Define theweight • Applytheweightmaptothe Galaxy catalogue: • Iterative process: • Compute againthe SP significances and sortthemfromhighesttolowest • SP with? -> Go back to 1, 2 and 3 • RepeatuntilallSPshavesignificanceunderthresholdormax. numberofiterationsreached
Systematicsmitigation: iterativeprocess SPswehavetoweightfor ( ): Eff. exp. time-z Skybrightness-i FWHM-i
Systematicsmitigation: testingtheimpact Resultsfrom DES Y1 0.3 < z < 0.45 0.45 < z < 0.6 0.15 < z < 0.3 (J. Elvin-Poole et al., arXiv:1708.01536) Y3 resultscomingsoon
SurveyPropertymaps (SPs) • Pearson’s correlationcoefficient, , helpstoidentifythese “families” ofSPs • Italsoallowstoidentifycorrelationsbetweenothermaps
SurveyPropertymaps (SPs) • Pearson’s correlationcoefficient, , helpstoidentifythese “families” ofSPs • Italsoallowstoidentifycorrelationsbetweenothermaps • Set differentcutsfor
SurveyPropertymaps (SPs) • Pearson’s correlationcoefficient, , helpstoidentifythese “families” ofSPs • Italsoallowstoidentifycorrelationsbetweenothermaps • Set differentcutsfor • Wefixto define a family. When posible, wetaketheweightedaveraged mean as representative • 102 SPs -> 34 SPs 0.7 -0.7
Systematicsmitigation: testingtheimpact Resultsfrom DES Y1 Y3 resultscomingsoon (J. Elvin-Poole et al., arXiv:1708.01536)
Systematicsmitigation: testingtheimpact Resultsfrom DES Y1 0.3 < z < 0.45 0.45 < z < 0.6 0.15 < z < 0.3 (J. Elvin-Poole et al., arXiv:1708.01536) Y3 resultscomingsoon
Systematicsmitigation: testingtheimpact Resultsfrom DES Y1 0.6 < z < 0.75 0.75 < z < 0.9 (J. Elvin-Poole et al., arXiv:1708.01536) Y3 resultscomingsoon
Systematicsmitigation: weightsvalidation • How do wevalidatetheseweights? • Selectionof a threshold: • Do wecorrectforthe 102 SPsusingonlythe 34 representatives? • Doestheselectionof a significancethresholdimpactourconstraints? • Isthere a thresholdthatistoohigh, so systematiccontaminationisleftwithoutcorrecting? • Biases: • Doesthe pixel estimatorfor introduce a biasduetotheweightingmethoditself? • Isthere a thresholdthatistoostrict, so weovercorrect? • Increaseuncertainty: • Istheweightingmethodaffectingthecovariance?
Systematicsmitigation: weightsvalidation • Do wecorrectforthe 102 SPsusingonlythe 34 representatives? SPswehavetoweightfor ( ): Eff. exp. time-z Skybrightness-i FWHM-i
Systematicsmitigation: weightsvalidation • Doestheselectionof a significancethresholdimpactourconstrains? 0.3 < z < 0.45 0.45 < z < 0.6 0.15 < z < 0.3 (J. Elvin-Poole et al., arXiv:1708.01536)
Systematicsmitigation: weightsvalidation • Does theour pixel estimatorfor introduce a biasduetotheweightingmethoditself? Landy-Szalayestimator (pixel version): Define estimatorbias: • Isthere a thresholdthatistoostrict, so weovercorrect? Define false correctionbias:
Systematicsmitigation: weightsvalidation • Does theour pixel estimatorfor introduce a biasduetotheweightingmethoditself? • Isthere a thresholdthatistoostrict, so weovercorrect? 0.3 < z < 0.45 0.45 < z < 0.6 0.15 < z < 0.3 (J. Elvin-Poole et al., arXiv:1708.01536)
Systematicsmitigation: weightsvalidation • Istheweightingmethodaffectingthecovariance? 0.3 < z < 0.45 0.45 < z < 0.6 0.15 < z < 0.3 (J. Elvin-Poole et al., arXiv:1708.01536)