1 / 16

CIRCUITE NUMERICE

CIRCUITE NUMERICE. 1. III. 2 . Num ă r ă toare. Clasificare:. CURS NR. 11. CIRCUITE NUMERICE. 2. CURS NR. 11. Q 0. Q 1. Q 2. Q 3. CU. R. CD. LD. A. B. C. D. CIRCUITE NUMERICE. 3. III.2.1 Tipuri de intrări. CURS NR. 11. Starea. Q 3. Q 2. Q 1. Q 0. 0. 0. 0. 0. 0.

Download Presentation

CIRCUITE NUMERICE

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CIRCUITE NUMERICE 1 III.2. Numărătoare Clasificare: CURS NR. 11

  2. CIRCUITE NUMERICE 2 CURS NR. 11

  3. Q0 Q1 Q2 Q3 CU R CD LD A B C D CIRCUITE NUMERICE 3 III.2.1 Tipuri de intrări CURS NR. 11

  4. Starea Q3 Q2 Q1 Q0 0 0 0 0 0 1 0 0 0 1 2 0 0 1 0 3 0 0 1 1 4 0 1 0 0 5 0 1 0 1 6 0 1 1 0 7 0 1 1 1 8 1 0 0 0 9 1 0 0 1 10 1 0 1 0 11 1 0 1 1 12 1 1 0 0 13 1 1 0 1 14 1 1 1 0 15 1 1 1 1 CIRCUITE NUMERICE 4 III.2.2 Numărătoare asincrone III.2.2.1 Numărător binar asincron CURS NR. 11

  5. Q1 Q2 Q3 Q0 CBB1 CBB3 CBB0 CBB2 1 1 1 1 J J J J Q Q Q Q CK CK CK CK CKin Q Q Q Q K K K K R R R R Reset CKin Q0 Q1 Q2 Q3 0000 0 0011 3 0100 4 0101 5 0110 6 0111 7 1001 9 1010 10 1011 11 1100 12 1101 13 1110 14 1111 15 CIRCUITE NUMERICE 5 Astfel, conform observaţiilor de mai sus schema unui numărător asincron este: Formele de undă asociate numărătorului asincron: 0001 1 0010 2 1000 8 0000 0 CURS NR. 11

  6. CIRCUITE NUMERICE 6 CURS NR. 11

  7. CKin Q0 tpLH tpHL Q1 Q2 4tpHL 2tpHL+tpLH 3tpHL+tpLH Q3 0100 1101 1100 1111 0000 1110 1001 1011 1000 1010 0111 0000 0001 0010 0011 0101 0110 1110 0000 0010 1000 0100 1100 1010 0110 0100 1000 0000 1100 0000 1000 CIRCUITE NUMERICE 7 Formele de undă reale asociate numărătorului asincron: CURS NR. 11

  8. CIRCUITE NUMERICE 8 CURS NR. 11

  9. Q1 Q0 CBB1 CBB0 1 1 J J Q Q CK CK CKin Q Q K K R R Qn-2 Qn-1 CBBn-1 CBBn-2 1 1 J J Q Q (a) CK CK Q Q K K R R Q0 Q0 Q4 Q0 Q1 Q1 Q5 Q1 Q2 Q2 Q6 Q2 Q3 Q3 Q7 Q3 Reset (b) Ck Ck Ck R R R CIRCUITE NUMERICE 9 CURS NR. 11

  10. CIRCUITE NUMERICE 10 III.2.2.2 Numărător binar asincron modulo p CURS NR. 11

  11. CBB1 CBB3 CBB0 CBB2 1 1 1 1 J J J J Q Q Q Q CK CK CK CK CKin Q1 Q2 Q3 Q0 Q Q Q Q K K K K R R R R Reset CIRCUITE NUMERICE 11 CURS NR. 11

  12. Ck Q0 Q1 Q2 tpHL tR Q3 tpLH R 1 0 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 100 0 101 CIRCUITE NUMERICE 12 Diagramele de timp ale numărătorului zecimal: CURS NR. 11

  13. Q4 Q8 Q0 Q0 Q0 Q0 Q1 Q5 Q1 Q1 Q1 Q9 Q10 Q2 Q2 Q2 Q6 Q2 Q3 Q3 Q3 Q11 Q3 Q7 f=fin/800 fin Ck Ck Ck R R R CIRCUITE NUMERICE 13 Divizor cu 800=16·10·5: CURS NR. 11

  14. CIRCUITE NUMERICE 14 III.2.2.3 Numărător binar asincron invers CURS NR. 11

  15. Q1 Q3 Q2 Q0 CBB1 CBB3 CBB0 CBB2 1 1 1 1 J J J J Q Q Q Q CK CK CK CK CKin Q Q Q Q K K K K R R R R Reset CIRCUITE NUMERICE 15 III.2.2.3 Numărător binar asincron reversibil CURS NR. 11

  16. CBB1 1 J Q Q1 CK Q2 Q3 Q0 Q K R CBB3 CBB0 CBB2 1 1 1 J J J I0 I0 I0 Q Q Q Y Y Y CK CK CK CKin I1 I1 I1 Q Q Q K K K R R A A A R Sens Reset CIRCUITE NUMERICE 16 CURS NR. 11

More Related