1 / 73

Samarium(II) Iodide Mediated Sequential Reactions

Samarium(II) Iodide Mediated Sequential Reactions. Roy Bowman January 16, 2004. Sequential Reactions. Multiple bonds formed in a one pot process No need to collect and purify intermediates Access to elaborate products

Download Presentation

Samarium(II) Iodide Mediated Sequential Reactions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Samarium(II) Iodide MediatedSequential Reactions Roy Bowman January 16, 2004

  2. Sequential Reactions • Multiple bonds formed in a one pot process • No need to collect and purify intermediates • Access to elaborate products • Although conceptually attractive, design of sequential reactions can be overwhelming • Cationic, anionic, radical, pericyclic, carbenoid, and transition metal catalyzed sequential processes have been realized Molander, G. A.; Harris, C. R. Tetrahedron 1998, 54, 3321-3354.

  3. Samarium(II) Iodide Totleben, M. J.; Curran, D. P.; Wipf, P. Journal of Organic Chemistry 1992, 57, 1740-4. Concellon, J. M.; Rodriguez-Solla, H.; Bardales, E.; Huerta, M. European Journal of Organic Chemistry 2003, 1775-1778 • Typically generated and utilized in situ • Most stable as Sm(III)

  4. Samarium(II) Iodide Girard, P.; Namy, J. L.; Kagan, H. B. Journal of the American Chemical Society 1980, 102, 2693-8.

  5. Samarium(II) Iodide Promotes several individual reactions important in synthesis: - Radical Cyclizations - Ketyl-Olefin Coupling - Pinacolic Coupling - Barbier Type Reactions - Aldol Type Reactions - Reformatsky Type Reactions - Conjugate Additions - Nucleophilic Acyl Substitutions -Cycloadditions

  6. Samarium(II) Iodide Ability to promote both one and two electron processes • Radical/Anionic • Anionic/Radical • Anionic/Anionic • Radical/Radical

  7. Reactivity Reactivity can be manipulated using: • Co-solvents: HMPA, TMG, DBU • Additives: Ni(II), Fe(III) • Irradiation of the reaction mixture • Allows for highly selective and efficient sequential reactions to be effective Molander, G. A.; McKie, J. A. Journal of Organic Chemistry 1992, 57, 3132-9. Cabri, W.; Candiani, I.; Colombo, M.; Franzoi, L.; Bedeschi, A. Tetrahedron Letters 1995, 36, 949-52. Ogawa, A.; Sumino, Y.; Nanke, T.; Ohya, S.; Sonoda, N.; Hirao, T. Journal of the American Chemical Society 1997, 119, 2745-2746. Machrouhi, F.; Hamann, B.; Namy, J. L.; Kagan, H. B. Synlett 1996, 633-634.

  8. Radical Cyclization/Carbonyl Addition • Unclear how carbonyl addition proceeded • Barbier or Grignard type reaction? Curran, D. P.; Totleben, M. J. Journal of the American Chemical Society 1992, 114, 6050-8.

  9. Formation of Organosamarium Curran, D. P.; Totleben, M. J. Journal of the American Chemical Society 1992, 114, 6050-8.

  10. Formation of Organosamarium Samarium-Barbier Conditions: Addition of O-Allyl-iodobenzene and acetophenone to a THF solution containing Samarium diiodide and HMPA Samarium-Grignard Conditions: Iodobenzene was added to a solution of SmI2/HMPA after; 5 minutes acetophenone was added Curran, D. P.; Totleben, M. J. Journal of the American Chemical Society 1992, 114, 6050-8.

  11. Radical Cyclization/Carbonyl Addition Molander, G. A.; Harring, L. S. Journal of Organic Chemistry 1990, 55, 6171-6.

  12. Radical Cyclization/Carbonyl Addition Curran, D. P.; Totleben, M. J. Journal of the American Chemical Society 1992, 114, 6050-8.

  13. Radical Cyclization/Carbonyl Addition • Pendent ester activates ketone • Control of three stereocenters • Forming radical is trans to ketyl oxygen Molander, G. A.; Kenny, C. Journal of Organic Chemistry 1991, 56, 1439-45.

  14. Radical Cyclization/Carbonyl Addition Molander, G. A.; Kenny, C. Journal of Organic Chemistry 1991, 56, 1439-45.

  15. Radical Cyclization/Nucleophilic Addition • Facile cyclization was achieved with unactivated ketones Molander, G. A.; McKie, J. A. Journal of Organic Chemistry 1992, 57, 3132-9.

  16. Radical Cyclization/ Nucleophilic Addition Molander, G. A.; McKie, J. A. Journal of Organic Chemistry 1992, 57, 3132-9.

  17. Radical Cyclization/ Nucleophilic Addition Molander, G. A.; McKie, J. A. Journal of Organic Chemistry 1992, 57, 3132-9.

  18. Intramolecular Nucleophilic Acyl Substitution/Intramolecular Barbier Cyclization • Provides access to a variety of bi- and tri-cyclic ring systems Molander, G. A.; Harris, C. R. Journal of the American Chemical Society 1995, 117, 3705-16.

  19. Intramolecular Nucleophilic Acyl Substitution/Intramolecular Barbier Cyclization • Ability to sequence formation of the organosamarium species so carbon-carbon bonds may be directed • Alkyl halides are reduced in the order I > Br > Cl • Sequences where order is unimportant are performed with diiodides • Sequenced reactions in which side chain reaction order is significant are performed with alkyl iodide/alkyl chloride substrates Molander, G. A.; Harris, C. R. Journal of the American Chemical Society 1995, 117, 3705-16.

  20. Intramolecular Nucleophilic Acyl Substitution/Intramolecular Barbier Cyclization Molander, G. A.; Harris, C. R. Journal of the American Chemical Society 1995, 117, 3705-16.

  21. Nucleophilic Acyl Substitution/Ketyl Olefin Coupling for Preparation of Oxygen Heterocycles • Provides access to bi- and tricyclic furans an pyrans Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1997, 62, 2944-2956.

  22. Nucleophilic Acyl Substitution/Ketyl Olefin Coupling Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1997, 62, 2944-2956.

  23. Nucleophilic Acyl Substitution/Ketyl Olefin Coupling Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1997, 62, 2944-2956.

  24. Ketyl-Olefin Coupling/β-Elimination • Result is net addition of an alkenyl moiety to a carbonyl group • Complementary to traditional alkylation techniques Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1998, 63, 812-816.

  25. Ketyl-Olefin Coupling/β-Elimination Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1998, 63, 4374-4380.

  26. Nucleophilic Acyl Substitution/Alkenyl Transfer Reactions • Provides cyclic products from acyclic starting materials Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1998, 63, 4374-4380.

  27. Nucleophilic Acyl Transfer/Alkenyl Transfer Reactions Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1998, 63, 4374-4380.

  28. Nucleophilic Acyl Transfer/Alkenyl Transfer Reactions Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1998, 63, 4374-4380.

  29. Nucleophilic Acyl Transfer/Alkenyl Transfer Reactions Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1998, 63, 4374-4380.

  30. Epoxide Ring Opening/Ketyl Olefin Coupling • Complete selectivity was achieved through chelation of the ketyl • oxygen and the hydroxyl group Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1997, 62, 2944-2956.

  31. Domino Epoxide Ring Opening/Ketyl Olefin Coupling Reactions Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1997, 62, 2944-2956.

  32. Domino Epoxide Ring Opening/Ketyl Olefin Coupling Reactions Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1997, 62, 2944-2956.

  33. Domino Epoxide Ring Opening/Ketyl Olefin Coupling Reactions Molander, G. A.; Harris, C. R. Journal of Organic Chemistry 1997, 62, 2944-2956.

  34. Epoxide Fragmentation/Tandem Radical Cyclizations Molander, G. A.; Del Pozo Losada, C. Tetrahedron 1998, 54, 5819-5832.

  35. Epoxide Fragmentation/Tandem Radical Cyclizations Molander, G. A.; Del Pozo Losada, C. Tetrahedron 1998, 54, 5819-5832.

  36. Epoxide Fragmentation/Tandem Radical Cyclizations Molander, G. A.; Del Pozo Losada, C. Tetrahedron 1998, 54, 5819-5832.

  37. Epoxide Fragmentation/Tandem Radical Cyclizations Molander, G. A.; Del Pozo Losada, C. Tetrahedron 1998, 54, 5819-5832.

  38. Intramolecular Barbier Cyclization/Grob Fragmentation • Stereospecific with regard to the leaving group • Stereochemistry of the alkoxide plays no role in • the stereochemistry of the fragmentation • Fragmentation proceeds under mild conditions Molander, G. A.; Le Huerou, Y.; Brown, G. A. Journal of Organic Chemistry 2001, 66, 4511-4516.

  39. Ring Expansion by Grob Fragmentation Mediated by SmI2 Molander, G. A.; Le Huerou, Y.; Brown, G. A. Journal of Organic Chemistry 2001, 66, 4511-4516.

  40. Ring Expansion by Grob Fragmentation Mediated by SmI2 Molander, G. A.; Le Huerou, Y.; Brown, G. A. Journal of Organic Chemistry 2001, 66, 4511-4516.

  41. Reformatsky/Nucleophilic Acyl Substitution • Provides an efficient route to functionalized 8 and 9 membered carbocycles Molander Gary, A.; Brown Giles, A.; Storch de Gracia, I. Journal of Organic Chemistry 2002, 67, 3459-63.

  42. Reformatsky/Nucleophilic Acyl Substitution • Diastereoselectivity of sequential process originates in the initial • Reformatsky reaction • Selectivity results from highly organized transition state Molander Gary, A.; Brown Giles, A.; Storch de Gracia, I. Journal of Organic Chemistry 2002, 67, 3459-63.

  43. Reformatsky/Nucleophilic Acyl Substitution Molander Gary, A.; Brown Giles, A.; Storch de Gracia, I. Journal of Organic Chemistry 2002, 67, 3459-63.

  44. Reformatsky/Nucleophilic Acyl Substitution Molander Gary, A.; Brown Giles, A.; Storch de Gracia, I. Journal of Organic Chemistry 2002, 67, 3459-63.

  45. Transformation of Carbohydrate Derivatives into Cyclopentanols Grove, J. J. C.; Holzapfel, C. W.; Williams, D. B. G. Tetrahedron Letters 1996, 37, 5817-5820.

  46. Transformation of Carbohydrate Derivatives into Cyclopentanols Grove, J. J. C.; Holzapfel, C. W.; Williams, D. B. G. Tetrahedron Letters 1996, 37, 5817-5820.

  47. Insertion of Isocyanides into Organic Halides Preparation of a-Hydroxy Ketones • Facile synthesis of a-hydroxy ketones by samarium mediated coupling of • organic halides , 2,6-xylyl isocyanide, and carbonyl compounds • a-Addition of organosamarium to isocyanide forms an (a-iminoalkyl)samarium • complex which can act as an acyl anion equivalent • Compatibility with a variety of functional groups under mild conditions Murakami, M.; Kawano, T.; Ito, Y. Journal of the American Chemical Society 1990, 112, 2437-9. Murakami, M.; Kawano, T.; Ito, H.; Ito, Y. Journal of Organic Chemistry 1993, 58, 1458-65.

  48. Insertion of Isocyanides into Organic Halides Preparation of a-Hydroxy Ketones Murakami, M.; Kawano, T.; Ito, H.; Ito, Y. Journal of Organic Chemistry 1993, 58, 1458-65.

  49. Insertion of Isocyanides into Organic Halides Preparation of a-Hydroxy Ketones Murakami, M.; Kawano, T.; Ito, H.; Ito, Y. Journal of Organic Chemistry 1993, 58, 1458-65.

  50. Insertion of Isocyanides into Organic Halides Preparation of a-Hydroxy Ketones Murakami, M.; Kawano, T.; Ito, H.; Ito, Y. Journal of Organic Chemistry 1993, 58, 1458-65.

More Related