1 / 15

Physical Properties of Solutions

Physical Properties of Solutions. Chapter 12. Solution Stoichiometry end of Chapter 4. Titrations.

Download Presentation

Physical Properties of Solutions

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Physical Properties of Solutions Chapter 12 SolutionStoichiometry end of Chapter 4

  2. Titrations In a titration a solution of accurately known concentration is added gradually added to another solution of unknown concentration until the chemical reaction between the two solutions is complete. Equivalence point – the point at which the reaction is complete Indicator – substance that changes color at (or near) the equivalence point Slowly add base to unknown acid UNTIL the indicator changes color 4.7

  3. What volume of a 1.420 M NaOH solution is Required to titrate 25.00 mL of a 4.50 M H2SO4 solution? WRITE THE CHEMICAL EQUATION! H2SO4 + 2NaOH 2H2O + Na2SO4 M M rx volume acid moles acid moles base volume base base acid coef. 4.50 mol H2SO4 2 mol NaOH 1000 ml soln x x x 1000 mL soln 1 mol H2SO4 1.420 mol NaOH 25.00 mL = 158 mL 4.7

  4. 0 DTb = Tb – T b 0 T b is the boiling point of the pure solvent 0 Tb > T b DTb = Kbm Boiling-Point Elevation T b is the boiling point of the solution DTb > 0 m is the molality of the solution Kb is the molal boiling-point elevation constant (0C/m) 12.6

  5. 0 DTf = T f – Tf 0 T f is the freezing point of the pure solvent 0 T f > Tf DTf = Kfm Freezing-Point Depression T f is the freezing point of the solution DTf > 0 m is the molality of the solution Kf is the molal freezing-point depression constant (0C/m) 12.6

  6. 12.6

  7. 0 DTf = T f – Tf moles of solute m= mass of solvent (kg) = 3.202 kg solvent 1 mol 62.01 g 478 g x 0 Tf = T f – DTf What is the freezing point of a solution containing 478 g of ethylene glycol (antifreeze) in 3202 g of water? The molar mass of ethylene glycol is 62.01 g. DTf = Kfm Kf water = 1.86 0C/m = 2.41 m DTf = Kfm = 1.86 0C/m x 2.41 m = 4.48 0C = 0.00 0C – 4.48 0C = -4.48 0C 12.6

  8. actual number of particles in soln after dissociation van’t Hoff factor (i) = number of formula units initially dissolved in soln Colligative Properties of Electrolyte Solutions 0.1 m NaCl solution 0.1 m Na+ ions & 0.1 m Cl- ions Colligative properties are properties that depend only on the number of solute particles in solution and not on the nature of the solute particles. 0.1 m NaCl solution 0.2 m ions in solution i should be 1 nonelectrolytes 2 NaCl CaCl2 3 12.7

  9. Change in Freezing Point • Which would you use for the streets of Bloomington to lower the freezing point of ice and why? Would the temperature make any difference in your decision? • sand, SiO2 • Rock salt, NaCl • Ice Melt, CaCl2

  10. Boiling-Point Elevation DTb = iKbm Freezing-Point Depression DTf = i Kfm Colligative Properties of Electrolyte Solutions 12.7

  11. Change in Freezing Point Common Applications of Freezing Point Depression Ethylene glycol – deadly to small animals Propylene glycol

  12. Freezing Point Depression At what temperature will a 5.4 molal solution of NaCl freeze? Solution ∆TFP = Kf • m • i ∆TFP = (1.86 oC/molal) • 5.4 m • 2 ∆TFP = 20.1oC FP = 0 – 20.1 = -20.1oC

  13. A colloid is a dispersion of particles of one substance throughout a dispersing medium of another substance. • Colloid versus solution • collodial particles are much larger than solute molecules • collodial suspension is not as homogeneous as a solution 12.8

  14. Colloids • Brownian motion • Tyndall Effect

  15. Suspensions • These are mixed, but not dissolved in each other • Will settle over time • Particles are bigger than 1 micrometer (larger than colloid) • Examples: dust in air, muddy water

More Related