1 / 15

AP Stats BW 9/16

Download Presentation

AP Stats BW 9/16

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. You are going to buy a battery for your video camera. You have 2 companies to choose from and they both claim their batteries will last an average of 40 hours. Both batteries cost the same. The sample standard deviation of the 2 different batteries is given below. Which battery would you choose? Why? Battery A: 1.58 Battery B: 5.3 AP Stats BW 9/16

  2. Identify and analyze patterns of distributions using shape, center and spread. Section2.4 – Measures of Variation SWBAT:

  3. Variation is the general term for SPREAD in a data set Standard Deviation is used to measure spread associated with mean Deviation is how much a value in a data set differs from the mean value: SAMPLE: (x- ) or POPULTATION: (x – μ) Variance is the average squared distancea data value is from the mean value. The 5-number summary is used to measure spread associated with the median. Measures of Variation

  4. Std Dev: average distance a value is from the mean -Measures the spread of the data about the mean -Enables us to compare the relative spread of the data with a single number -Is used with the mean to make inferences about a data set -Helps us to make generalization from sets of data **As with mean, standard deviation is affected by OUTLIERS and SKEWED DISTRIBUTIONS.** STANDARD DEVIATION

  5. There is a different calculation of standard deviation for sample and population: Mean: STANDARD DEVIATION, cont’d Deviation : Sample Std Dev (s) Deviation Squared: Sum of Squares • Steps: • 1) Find the mean of the data set (x-bar) • Find the deviation (distance) from the mean of each data item. • Square the deviation. • Find the sum of squares • Divide the sum of squares by (n-1) to get variance (avg. squared sample deviation) (s2) • Take the square root to find the standard deviation (s) Variance

  6. Population Std Dev, σ (sigma) STANDARD DEVIATION, cont’d Deviation: (x – μ) Deviation Squared: Mean: μ Sum of Squares • Steps: • 1) Find the mean of the data set (mu) • Find the deviation (distance) from the mean of each data item. • Square the deviation. • Find the sum of squares • Divide the sum of squares by N to get variance (avg. squared deviation) (sigma-squared: σ2) • Take the square root to find the standard deviation (σ ) Variance

  7. The means on a 20 point quiz for class A and class B were both 18. Find the variance, standard deviation, and range for the two sets of quiz scores. Class A: 20, 17, 17, 17, 19 Class B: 15, 20, 19, 16, 20 Will you use sample or population standard deviation? Standard Deviation - Example 1

  8. Quiz Scores Mean: 18 Class A: 20, 17, 17, 17, 19 Variance: σ2 = 1.6 Standard Deviation: σ = √1.6 = 1.26 Range: 20-17 = 3

  9. YOU TRY… Mean: 18 Class B: 15, 20, 19, 16, 20 Variance: σ2 = 4.4 Standard Deviation: σ = √4.4 = 2.097 Range: 20-15 = 5

  10. Class A: 20, 17, 17, 17, 19 Class B: 15, 20, 19, 16, 20 Variance: σ2 = 1.6 Standard Deviation: σ = √1.6 = 1.26 Range: 20-17 = 3 Variance: σ2 = 4.4 Standard Deviation: σ = √4.4 = 2.097 Range: 20-15 = 5 Let’s analyze results: Which class scores were more centralized? Which were more spread out? Is more spread good or bad in this situation? Can we say that one class did better than the other?

  11. Facts about Standard Deviation: Standard Deviation, cont’d: • If Std Dev is small, the data has little spread (ie the majority of points fall very near the mean). • As the observations become more spread out about the mean, the Std Dev increases. • If Std Dev = 0, there is no spread. This ONLY happens when ALL data items are the SAME VALUE. • The Std Dev is significantly affected by outliers and skewed distributions.

  12. Std Dev is important to correctly interpret data. For example, in physical sciences, a lower Std Dev for the same measurement implies higher precision for the experiment. Facts about Standard Deviation, cont’d: • When interpreting MEAN, you MUST also indicate the standard deviation. • Our quiz scores from previous slides is an example of why. • Another example: let’s say mean weather over a day in two cities is 240C. However, if the Std Dev is very large, it means likely extremes of temperatures exist (really hot during day/but cold at night like desert). On the other hand, if Std Dev is small, it means a fairly uniform temp throughout day (like coastal region).

  13. Here are the measurements of the level of phosphate in the blood of a patient, in milligrams of phosphate per deciliter of blood, made on six consecutive visits to a clinic. 5.6 5.2 4.6 4.9 5.7 6.4 Compute the mean, variance, and standard deviation. What does this tell us? Standard Deviation - Example 2 Mean: x-bar = 5.4 Variance: s2 = 0.41 Standard Deviation: s = 0.64 This tells us that overall the readings for THIS PATIENT are fairly close to his average readings for this group of six. HOWEVER…it doesn’t tell us enough compared to “good” levels of phosphate. We also don’t know if small changes are in fact significant or dangerous.

  14. Interpreting Standard Deviation Without calculating, determine which set has a greatest/lowest standard deviation. Explain.

  15. P 92. 1, 3, (show work), 6-10all, 14-17all and worksheet for Std Dev. HOMEWORK:

More Related