290 likes | 410 Views
L.Ludovici INFN Roma I. Università di Roma III 27 Gennaio 2003. Prospettive Sperimentali della Fisica delle Oscillazioni di Neutrini. Scenario attuale. Presente. LCPV - n Factory. Futuro Remoto. Q 13 – Superbeam. Futuro Prossimo. Short Abstract.
E N D
L.Ludovici INFN Roma I Università di Roma III 27 Gennaio 2003 Prospettive Sperimentali della Fisica delle Oscillazioni di Neutrini Scenario attuale Presente LCPV - nFactory Futuro Remoto Q13 – Superbeam Futuro Prossimo
Short Abstract... Long-term goal: Leptonic CPV at the nFactory Uncertain perspective: technology, cost, physics. Mid-term goal: q13 discovery Q13 large? LMA ? CPV already found ? nFactory Doubtful... Only if mColl
1. EVIDENCE FOR OSCILLATION OF ATMOSPHERIC NEUTRINOS Super-Kamiokande Collaboration (Y. Fukuda et al.). Phys.Rev.Lett.81:1562 (1998) hep-ex/9807003 1597 2. OBSERVATION OF TOP QUARK PRODUCTION IN ANTI-P P COLLISIONS CDF Collaboration (F. Abe et al.). Phys.Rev.Lett.74:2626 (1995) hep-ex/9503002 919 3. OBSERVATION OF THE TOP QUARK. D0 Collaboration (S. Abachi et al.). Phys.Rev.Lett.74:2632 (1995)hep-ex/9503003 878 4. ATMOSPHERIC nm /ne RATIO IN THE MULTIGEV ENERGY RANGE Kamiokande Collaboration (Y. Fukuda et al.). Phys.Lett.B335:237 (1994) 729 5. INITIAL RESULTS FROM THE CHOOZ LONG BASELINE REACTOR NEUTRINO OSCILLATION EXPERIMENT. CHOOZ Collaboration (M. Apollonio et al.). Phys.Lett.B420:397 (1998) hep-ex/9711002 659 6. OBSERVATION OF A SMALL ATMOSPHERIC nm /ne RATIO IN KAMIOKANDE. Kamiokande-II Collaboration (K.S. Hirata et al.). Phys.Lett.B280:146 (1992) 613 7. FIRST MEASUREMENT OF THE RATE FOR THE INCLUSIVE RADIATIVE PENGUIN DECAY b ® s g. CLEO Collaboration (M.S. Alam et al.). Phys.Rev.Lett.74:2885 (1995) 611 8. LIMITS ON NEUTRINO OSCILLATIONS FROM THE CHOOZ EXPERIMENT. CHOOZ Collaboration (M. Apollonio et al.). Phys.Lett.B466:415 (1999) hep-ex/9907037 578 9. EVIDENCE FOR nm®ne OSCILLATIONS FROM THE LSND EXPERIMENT AT LAMPF. LSND Collaboration (C. Athanassopoulos et al.). Phys.Rev.Lett.77:3082 (1996) nucl-ex/9605003 553 10. EVIDENCE FOR TOP QUARK PRODUCTION IN p p COLLISIONS AT S 1/2 = 1.8-TeV. CDF Collaboration (F. Abe et al.). Phys.Rev.D50:2966 (1994) 544 11. MEASUREMENT OF A SMALL ATMOSPHERIC MUON-NEUTRINO / ELECTRON-NEUTRINO RATIO. Super-Kamiokande Collaboration (Y. Fukuda et al.).Phys.Lett.B433:9 (1998) hep-ex/9803006 534 12. MEASUREMENT OF THE RATE OF ne + d ® p + p + e- INTERACTIONS PRODUCED BY B8 SOLAR NEUTRINOS AT THE SUDBURY NEUTRINO OBSERVATORY. SNO Collaboration (Q.R. Ahmad et al.). Phys.Rev.Lett.87:071301 (2001) nucl-ex/0106015 525 13. STUDY OF THE ATMOSPHERIC NEUTRINO FLUX IN THE MULTI-GEV ENERGY RANGE. Super-Kamiokande Collaboration (Y. Fukuda et al.). Phys.Lett.B436:33 (1998) hep-ex/9805006 525 14. MEASUREMENT OF THE SOLAR ELECTRON NEUTRINO FLUX WITH THE HOMESTAKE CHLORINE DETECTOR. Bruce T. Cleveland et al. Astrophys.J.496:505 (1998) 524 15. THE ne AND nm CONTENT OF THE ATMOSPHERIC FLUX. R. Becker-Szendy et al (IMB Coll.) Phys.Rev.D46:3720 (1992) 521 500+ Cited papers 1990-2002
Present evidences of neutrino mass and mixing • ne® nm,nt with Dm2 ≈ 10-4 eV2, almost (not fully) maximal mixing. • nm and/or nt NC appearance from the Sun in SNO. • “Lab Test”:reactor ne disappearance at L»200Km in Kamland (4.6s) • nm ®nt with Dm2 = (1.6¸3.9).10-3 eV2, sin22q > 0.92 at 90%CL • Super-K upward-going atmospheric nm disappearance. • Most likely nm ®ntfrom po and matter effects in Super-K (2÷3s) • “Lab Test”:nm disappearance in accelerator from K2K-I (2÷3s) • nm ® newith Dm2~ 0.1 eV2 • LSND claimed evidence of neutrino oscillation. • Unseen by KARMEN with marginal sensitivity • Controversy to be solved by Mini-BooNE (results in 2004-5)
The Mixing Matrix ( ) ( ) C12 S120 -S12 C12 0 0 0 1 C13 0 S13eid 0 1 0 -S13e-id 0 C13 1 0 0 0 C23 S23 0 -S23 C23 U = UA.U13.US = ?? solar atmospheric 3 neutrinos®2 mass differences, 3 angles and 1 CP phase Dm212Dm223 q12q23q13 d n1 n2 n3 ne nm nt back to flavour eigenstates pure flavour eigenstate = Uai each mass eigenstate takes a different phase P(na® nb) = dab - 4 SRe[Wab] sin2Djk ±2 SIm[Wab] sin 2Djk jk jk ( ) k>j k>j CP odd * * jk Djk = Dm2jk(eV2)L(Km)/En (GeV) , Wab = Uaj Ubj Uak Ubk
Knowledge of mixing parameters • Solar ndo mix.NC appearance in SNO “Lab” confirmation: claim of disappearance in KamLand • Atmospheric n disappear. Up/Down asymmetry inSuper-K “Lab” confirmation: indication of disappearance in K2K • ne® nm Negative result inCHOOZ Dm223 = Dm2atm=1.6¸4.10-3 eV2 Dm212 = Dm2sun=(0.6¸0.9).10-4 or (1.3¸2.0).10-4 eV2 q23 ~ 45o q12~45o • q13 < 13o • d No idea. <
( ) ( ) Effective Mixing Angles P(na® nb) = dab - 4 SRe[Wab] sin2Djk ±2 SIm[Wab] sin 2Djk jk jk ( ) k>j k>j CP odd * * jk Djk = Dm2jk(eV2)L(Km)/En (GeV) , Wab = Uaj Ubj Uak Ubk For experiments at terrestrial baselines, with D12<<1: P(ne® nm) @ sin22q13 sin2q23 sin2 D23 = sin22qmesin2 D23 P(nm® nt) @ cos4q13 sin22q23 sin2 D23 = sin22qmtsin2 D23 P(ne® nt) @ sin22q13 cos2q23 sin2 D23 = P(nm® nm) @ = 1 – (sin22qmt+sin22qme)sin2 D23 P(ne® ne) @ 1 - sin22q13 sin2 D23 Only 3 parameters: q23Dm23 q13 Reduce to two flavour mixings with effective mixing angles: sin22qmt = cos4q13 sin22q23@ sin22q23 sin22qme = sin22q13 sin2q23 @ 0.5 sin22q13
( ) ( ) LCP Asymmetry Being q13 small, if Dm212 is only 10¸100 times smaller than Dm223 (LMA): P(ne® nm) @ sin2q23 sin22q13 sin2 D13 + + cos2q23 sin22q12 sin2 D12 + + JD12 sinD13 cos( ±d- D13) J = cos q13 sin2q12sin2q23sin2q13 large large large ?? “atmospheric” “solar” ( ) “interference” µJ determinant ne«nm gives the best opportunity for LCPV due to the suppression of the leading CP conserving contributions LCP asymmetry vanishes for small q13. Discovery of non-zero q13 is a pre-requisite of any sensible experimental strategy to attack the difficult problem of LCPV.
The Neutrino Factory Idea F~g-2~Em2/mm2 50% nm(nm) m+(m-) 10-1000kt Mass Detector 50% ne(ne) mSR SBL (100¸1000 Km) LBL (1000¸5000 Km) VLBL (1¸2 REARTH ) n-Factory Kosharev 1974 Wojcicki 1974 Collins 1975 Geer 1998 m-collider Budker 1969 Skrinski 1971 Neuffer 1979 Conventional “pion” beams are dominantly nm (nm) with a ~few percent contaminations of nm (nm) ne ne. Difficult to access all transitions and oscillation parameters are measured with uncertainty O(10%) while NuFact beams could allow O(1%) precision.
Em2Nm dN @ Fn (y) pmm2L2 dydS q=0 Neutrino Factory Fluxes • Well known flux (m decay kinematic, polarisation) • Clean beam composition: 1:1 nm+ne (or nm+ne) • Flux scales with NmEm2 /Lm2 • Average neutrino energy scales with Em • Interaction rate scales with MDETNmEm3/Lm2 P. Lipari, hep-ph/0102046 Em= 5,10,20,40 GeV m®ne L= 1000 Km Fnm(y) = 2y2 (3-2y) Q(y) Q(1-y) Fne(y) = 12y2 (1-y) Q(y) Q(1-y) s ( n )@0.67 . 10-38 . En (GeV) cm2 s ( n )@0.34 . 10-38 . En (GeV) cm2
LCPV at the nFactory P(ne®nm) - P(ne®nm) P(ne®nm) + P(ne®nm) CP 2 possible ways: Aem = Aem = Earth is CP-odd. In LBL and VLBL experiments (L>1000 Km) the effects of propagation in matter are in general large and P(na®nb) ¹ P(na®nb) even if CP is conserved. P(ne®nm) - P(nm®ne) P(ne®nm) + P(nm®ne) T ACP at NuFact comparing wrong sign m- in a n beam from m+ with the charge conjugate process and beam. Need subtraction of matter induced CP effects (two detectors at different baselines). Need precise knowledge of the relative neutrino (anti-) cross-sections. AT free from matter induced effects but it requires the lepton ID and charge determination not only for muons but also for electrons, very difficult in practice in a large O(50Kt) detector.
HARP MiniBooNE KamLand Roadmap K2K-II NOW nm disappearance Dm212,q12 at 2% LSND? MICE 2005 CNGS • appearance NC/CC NuMI JHFn Q13 down to 1o nF R&D 2010 ? Off-Axis ? JHF-HK Q13 LCP violation Q13 down to 0.1o 2015 ? nFactory LCP violation 2020
JHFn Physics Programme High intensity neutrino beam from JHF (0.75 MW) to Super-K (50kt) Phase I 1. Discovery of q13 down to sin22q13 > 0.006 2. Precision measurement of sin22q23 and Dm223 3. Search for sterile components through NC interactions JHF upgrade to 4 MW power. Construction of Hyper-K (1Mt) Phase II 1. Discovery of q13 down to sin22q13 > 0.001 2. Leptonic CP violation. d down to 10-20 degrees if sin22q13 > 0.01
Current(mA) Energy(GeV) JHF facility • KEK-JAERI joint project • JAERI@Tokai-mura, 295 Km from • Super-K (60Km NE of KEK) • Construction 2001-2007 • Cost: 1335(1890) Oku Yen (1 Oku=108)
Off-Axis neutrino Beams BNL proposal E889 http://minos.phy.bnl.gov/nwg/papers/E889 Decay Pipe Horns Target n Detector q 1 mp2 – mm2 mp2 En= Fn= (Ep - ppcosq)2 4p L2 2 (Ep - ppcosq) Ep >>mp, andQ <<1 1 1 Ep mp2 – mm2 2 Ep (1 + gp2q2)2 mp2 (1 + gp2q2) mp p L2 • Much higher flux than old-style NBB. • Strong cut-off of HE tail. • Reduced ne contamination. • Tune energy to maximise sensitivity • D = 1.27 . Dm2(eV2) . L(Km) / E(GeV) • Beam energy almost fixed by geometry
JHFn Beam • 3.3.1014 ppp at 0.285 Hz (0.75 MW, 2.64 MJ/pulse) • 1021 pot/yr in 130 days/yr • SC proton transport line • Carbon target • Secondary pions focused by horns • Decay pipe 130m length from target • Near detector at 280m from target • Intermediate detector at 1.5Km • Super-K at 295 Km. (22.5 kt fiducial) • Beam steering angle 2.5o±0.5o. • Tune energy between 0.4 and 1 GeV • Best tuning to Dm2=(1.6¸4).10-3 eV2 q=1o q=2o q=3o
JHFn Near Detectors Flux.L2 @ Super-K Flux.L2 @ 1.5 Km Flux.L2 @ 0.28 Km Near detector at 280 m • Covers from 0o to 3o. • Monitor the beam stability and flux. • High rate: 60 events/kt/spill. • Study nm and ne interactions: CCQE, CC, NC. • Non point-like n source, different target, different detector technology: flux extrapolation to Super-K problem. Intermediate detector at 1.5 Km 60% difference • Off-Axis as Super-K • Water-Cherenkov (100t fiducial mass) to cancel most of the flux extrapolation syst. • Spectrum differences < 10% ® 2% systematic due to ne background subtraction. Better than 10%
Detector at 1.5Km Conceptual design.
Ereco (MeV) s=80MeV Etrue (MeV) Ereco - Etrue (MeV) Neutrino Energy Measure Almost exact (Fermi motion) for QE interactions: nl n ®l p CCQE mnEl – ml2/2 Enrec = mn–El + Plcosql non-QE CC interactions of higher energy neutrinos ® background for nm disappearance non-QE background Coherent po production from NC interactions of higher energy neutrinos is a background for ne appearance
Q13 (ne appearance) Dm2=3.10-3 sin2q13=0.1 e/po separation 1. Forward cut 2. high inv.mass cut 3. 1-2 rings likelihood cut 4. Ring balance cut
Dm23, q23 (nm disappearance) Survival probability Measured/Non-Oscillated 22.5kt x 5 year • Measured spectrum in Super-K: • Muon-like FC events in SK • Neutrino energy reconstruction • Subtraction of non-QE backg. sin22q • Non-oscillated spectrum: • Muon-like events in Near Detec. • Neutrino energy reconstruction • Subtraction of non-QE backg. • Near-Far extrapolation Dm2 Fit with: P(nm® nm) = 1 -sin22q23 cos4q13 sin2D23 Oscillation pattern clearly visible High precision determination: d sin22q23 = 0.01 dDm223 = 4.10-5 eV2
Search for sterile neutrinos NC interactions sensitive to all active neutrinos. Together with nm®nmand nm®ne, NC provide a measurement of nm®ntand nm®ns. Expected single po events 22.5kt x 5 year NC selection of single po, lepton-less events: nN®nN po 90%CL bands po production cross-section accurately measured (better than 5%) in the near detectors. No way to reconstruct the neutrino energy. Narrow Band neutrino beam essential.
JHF-II (>2012) 0.75 ® 4MW beam power 50 kt ® 1 Mt water Cherenkov (Hyper-Kamiokande) 3x105 events/year Leptonic CPV
CPV Sensitivity of JHF-II 0.14 Q13 excluded by CHOOZ 0.12 Sin22Q13 Stat+BG 10%syst 0.10 If JHF-I discovers non-zero q13, than JHF-II will be sensitive to LCPV down to d=10-20 degrees. Stat+BG 5%syst 0.08 Stat+BG 2%syst Stat+BG no syst 0.06 0.04 Stat. Only. No BG 0.02 Q13 not reachable by JHF-I 0 0.2 0.1 1 0.7 0.4 0.9 0.6 0.3 0.8 0 0.5 sin d sin22q12 P(ne®nm) - P(ne®nm) P(ne®nm) + P(ne®nm) Dm212L . . sin d CP = Aem = sin q13 4 En (without matter effects)
Status of JHFn • La costruzione di JHF è iniziata nel 2001 e il primo fascio è atteso nel 2007. • La fase-I (0.75MW) è approvata e finanziata (oltre 1M€). • Il programma di neutrini è una delle principali motivazioni per la costruzione della facility. • L’approvazione e il finanziamento della neutrino beam-line è atteso per questa estate in Giappone (MEXT). • Una prima LoI è apparsa nel 2001. • Nel 2002 si sono tenuti due workshop internazionali, con partecipanti da Giappone, Canada, Francia, Italia, Corea, Russia, Spagna, UK e USA. • Sono stati formati dei working groups internazionali. • Una LoI aggiornata è stata inviata nel gennaio 2003, firmata da istituti in Giappone, Canada, Francia, Italia (Bari,Napoli,Padova,Roma I), Corea, Polonia, Russia, Spagna, Svizzera, UK and USA. JHFn è il progetto più interessante per scala dei tempi, strategia sperimentale, flessibilità e ricchezza del programma scientifico. La partecipazione italiana deve rafforzarsi per contribuire in modo rilevante e visibile.
Conclusioni Finora • La fisica delle oscillazioni di neutrini vive anni di importanti risultati. • I neutrini solari oscillano. Evidenza di neutrini attivi non-ne dal sole. Conferma da una sorgente artificiale. • Forte indicazione di sparizione dei nm atmosferici. Conferma (non conclusiva) da una sorgente artificiale. Next (qualche anno) • K2K-II: Conferma sparizione nm . Pattern di oscillazione. • NuMi: NC/CC, sterili/tau • CNGS: apparizione diretta di tau • MiniBooNE: LSND? Next2 (entro il decennio) • Ricerca di q13. Segno di Dm223 (gerarchia) ?. • Misura di precisione dei parametri (GUT test, mass models,...) Next3 (....) • Leptonic CP violation. • Test del triangolo di unitarietà
HARP MiniBooNE KamLand Roadmap K2K-II NOW nm disappearance Dm212,q12 at 2% LSND? MICE 2005 CNGS • appearance NC/CC NuMI JHFn Q13 down to 1o nF R&D 2010 ? Off-Axis ? JHF-HK Q13 LCP violation Q13 down to 0.1o 2015 ? nFactory LCP violation 2020