1 / 29

Prospettive di fisica a LHC

Prospettive di fisica a LHC. Parte II) La fisica dello Standard Model (escluso l’ Higgs, trattato successivamente) -misure di precisione di M w e M top . - b- physics. Lo Standard Model a LHC. LHC: una fabbrica di top quarks. s (bb)= 500 m b Possibili studi di processi rari

qamra
Download Presentation

Prospettive di fisica a LHC

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Prospettive di fisica a LHC Parte II) La fisica dello Standard Model (escluso l’ Higgs, trattato successivamente) -misure di precisione di Mw e Mtop. - b- physics Corso SM, Dottorato, XX ciclo

  2. Lo Standard Model a LHC LHC: una fabbrica di top quarks s(bb)= 500mb Possibili studi di processi rari (es. Bs->2m, studio di violazione di CP con alta statistica; Caveat: capacità di Trigger) misure di alta precisione di MW (goal: dMW10 MeV, limitato dalla sistematica) 108 tt/anno (ad alta luminosità) Corso SM, Dottorato, XX ciclo

  3. Le misure di precisione a LHC: motivazioni La predizione SM di MHiggs: DM t= 5.2 GeV incertezze attuali DMW= 39 MeV Misure dirette consistenza?! 80.385 Fit agli osservabili elettrodeboli Dipendenza da mt, mH nello SM Corso SM, Dottorato, XX ciclo

  4. La fisica del top Produzione di coppie di top: stt(th)=825±150 pb NNLO-NNNLL: Kidonakis, Vogt, PRD 68 (03) 114014 This means 8 millions tt pairs/year (1 pair/second) at “low” luminosity! 1033cm-2s-1=1nb-1s-1 qq->tt: 13% gg->tt: 87% quark annihilation gluon fusion Corso SM, Dottorato, XX ciclo

  5. j1 W j2 t b-jet La fisica del top • „easiest“ channel : • tt  bb qq l (semi-leptonic) BR = 43 % • 3.5 million semileptonic events • corresponding to 10 fb-1 • CMS analysis with hard cuts: • 0.14% of the events kept (!!!) • Goal: • Error on mt  1 GeV • statistical error 250 MeV • largest sys. errors: • pT spectrum 400 MeV • b-jet energy scale ? • Measurements at 1 fb-1 • initial mass determination • total & diff. cross sections Corso SM, Dottorato, XX ciclo

  6. La fisica del top tt  bb qq  event simulated in CMS Corso SM, Dottorato, XX ciclo

  7. Top quark: capacita’ di trigger Efficienza di trigger 0.8 0.6 0.4 Low Lumi HLT threshold 0.2 10 fb-1 Full L1 simulation + HLT reconstruction Off-line reconstruction > 70% efficiency in fiducial region, for typical HLT threshold Corso SM, Dottorato, XX ciclo

  8. La fisica del top: eventi di-leptonici • Both top quarks decay • semi-leptonically: • - BR  5% • - low background • - Mass determination free from • Jet-scale uncertainties • but two neutrinos in final state • Exploit M(ll)-Mtop correlation • to determine Mtop • mt  1.7 GeV Corso SM, Dottorato, XX ciclo

  9. La fisica del top Metodo alternativo per la misura di Mtop Lepton + J/y: 1000 events/year @ L=1034 J/y->mm J/y->ee J/y->mm is a very clean signal. MlJ/y has a dependence on Mt. • Independent from jet scale • Among the main sistematics: • b fragmentation Corso SM, Dottorato, XX ciclo

  10. Mtop da leptone + J/y: Per confronto: di-leptoni Corso SM, Dottorato, XX ciclo

  11. tt spin correlation La fisica del top • Very short lifetime, • no top bound states • Spin info not diluted by hadron formation • Distinguishes between • quark annihilation • A = -0.469 • and gluon fusion • A = +0.431 Use double leptonic decays tt  bb l l A= 0.311  0.035  0.028 (using 30 fb-1) Corso SM, Dottorato, XX ciclo

  12. Produzione di top singolo t-channel s-channel Wt-channel s=10 pb s=247 pb s=56 pb Main bkgs: ttbar, Wbb • Tevatron puts only an upper limit on s • Directly related to |Vtb| • Sensitivity to new physics: FCNC (t-ch.), new gauge bosons (s-ch.), H±->tb … • Background to tt and several searches (ttH, WH->lnbb, …) • Possibility to study top properties (mass, polarization, charge) with very little reconstruction ambiguities Corso SM, Dottorato, XX ciclo

  13. direct measurement of Vtb • observable by Tevatron in Run II • LHC t  1.5 t • Selection: • t  bW  b e () • b-jet + high pT lepton • reconstruction of top mass • Background from tt • signal to bkgd. 3.5 : 1 Production mechanisms and cross sections: Produzione di top singolo  245 pb  60 pb  10 pb Experimental determination of Vtb to percent level (with 30 fb-1) Corso SM, Dottorato, XX ciclo

  14. y = pseudorapidity DGLAP evolution qq  W  l Produzione di W e pdf • Fundamental processes at LHC are • the scattering of • Quark – Antiquark • Quark – Gluon • Gluon – Gluon Examples: gg  H • need precise of parton density Functions [ pdf(x,Q2) ] + QCD corrections (scale) Corso SM, Dottorato, XX ciclo

  15. Esempio di “early physics” a LHC: produzione di W • pT and rapidity distributions are very sensitive to pdf • particularly sensitive variable: • ratio of W+/Wcross section measures u(x)/d(x) Example: study for 0.1 fb-1, i.e. 2·106 W produced Sensitive to small differences in sea quark distribution Corso SM, Dottorato, XX ciclo

  16. CDF W MW 2004: mW = 80 412  42 MeV 2007: mW  80 ...  20 MeV (2.5 ·10-4) LEP & Tevatron Run I from Tevatron Run II Improvement at the LHC to  10 MeV envisaged requires control of systematic error to 10-4 level “Traditional” method: mW from transverse mass distribution Corso SM, Dottorato, XX ciclo

  17. MW Corso SM, Dottorato, XX ciclo

  18. MW • General idea at LHC: • take Z   events • remove one  to fake Z   ““ • mZ = 91 187.5  2.1 MeV known Corso SM, Dottorato, XX ciclo

  19. MW • Example: • use Z   ““ data to create • transverse mass distribution for • arbitrary MX • compare MXTand compare to W data • statistical error from 1 fb-1 • mW  20 MeV • Systematic errors to be investigated: • small differences in W/ Z production • (pT &  distributions) • final state radiation • ( doesn‘t radiate!) • different backgrounds Corso SM, Dottorato, XX ciclo

  20. MW Corso SM, Dottorato, XX ciclo

  21. W/Z + jet(s) physics • An ideal physics final state to connect data to theoretical predications, and improve our understanding of event generation which is critical to many physics analysis: • Test perturbative QCD at large momentum transfer • Indirect measurement of PDF including heavy flavor • Very large cross section to reduce the statistical uncertainty and compare to NLO and NNLO calculations • Serious background process of new physics • Improve Reconstruction technique • Precise Luminosity measurement • Reliable Background normalization Results of W + jets in Tevatron Phys. Rev. Lett. 79, 4760 (1997) Corso SM, Dottorato, XX ciclo

  22. Minimum Jet Pt : 25 GeV (because of large amount of jets from pileup and underlying events below 25 GeV, see plots in later slide) • Minimum Jet-Jet distance : 0.5 • Jet Eta from –5.0 to 5.0 • W/Z semileptonic decay, fragmentation and hadronization, multiple parton scattering by Pythia W/Z + jet(s) physics Alpgen prediction @ LHC: sensitive to , e.g.: => Z+1 jet W+1 jet Z+2 jet W+2 jet Z+3 jet W+3 jet Z+4 jet Z+4 jet Corso SM, Dottorato, XX ciclo

  23. Leading Order Feynman diagrams: Only s-channel has three boson vertex Charged Couplings Allowed in the Standard Model WWW, WWZ, WW Neutral Couplings Forbidden in the Standard Model ZZZ, ZZ, Z What we might expect to see: Cross section enhancement Enhancement at high pT of V 1,2 Enhancement at high MT Production Angle Triple Gauge Boson (W,Z,) Couplings Corso SM, Dottorato, XX ciclo

  24. Triple Gauge Boson Couplings Test CP conserving anomalous couplings at the WW vertex  and  Sensitivity: pT spectrum SM couplings vs current limits at 1.5 TeV • Method: • W final states • W  e and  • pT spectrum of photon Corso SM, Dottorato, XX ciclo

  25. B physics • b physics topics at CMS: • inclusive b production • at 14 TeV and in  collsions • b decays • e.g. b J/ + X • rare b decays • e.g. FCNC in B0s + • CP violation in B0s J/ • B0soscillations • Bc studies Example: reconstruction of B0s J/  + K+K • Main difficulties: • Trigger (low pT thresholds needed) • background rejection Corso SM, Dottorato, XX ciclo

  26. B physics example: B0s decays Rare decay: Bsmm s(bb)= 500 mb ~ 103 Bs/s @ L=1031 SM BR ~ O(10-9 ) from FCNC b  s reachable in 1 year L= 1031 isorate trigger curves: Non-rare channel: 20 Hz Bs J/psi f  mmKK 30 Hz Trigger efficiencies for Bs mm ~ 8 104 decays/10 fb-1 feasable for CP violation studies Corso SM, Dottorato, XX ciclo

  27. Method: • reconstruct B0s • b  X on other side • Analysis: • single  trigger pT > 6.5 GeV (< 2.4) •  4500 signal events expected in 10/fb • Result from MonteCarlo study: • sensitivity (95% CL) to oscillation • frequency xs [ps-1] versus signal • purity fs (less sensitive) mass resolution: 18.5 MeV B physics example: Sensitivity to B0s Oscillations TRIGGER (not easy !) critically dependent on background rejection capability… Corso SM, Dottorato, XX ciclo

  28. B0s Oscillations Current status: Corso SM, Dottorato, XX ciclo

  29. B0s Oscillations Tevatron will certainly improve this result…: Corso SM, Dottorato, XX ciclo

More Related