270 likes | 386 Views
MC2-AQ Model configuration and preliminary results for ESCOMPTE experiment. Joanna Struzewska Institute of Environmental Engineering Systems Warsaw University of Technology, Poland Jacek W. Kaminski York University, Toronto, Canada. OUTLINE. MC2-AQ model description
E N D
MC2-AQModel configuration and preliminary results for ESCOMPTE experiment Joanna Struzewska Institute of Environmental Engineering Systems Warsaw University of Technology, Poland Jacek W. Kaminski York University, Toronto, Canada
OUTLINE • MC2-AQ model description • Model configuration for ESCOMPTE experiment • Model results - meteorological parameters • Model results - chemical parameters • Modelling issues • Summary
MULTISCALE AIR QUALITYMODELLING SYSTEMGEM-AQ / MC2-AQ Joint project between • Institute of Environmental Engineering Systems Warsaw University of Technology • York University, Toronto, Canada Department of Earth and Atmospheric Science Multiscale Air Quality Modelling Network (www.maqnet.ca) (sponsored by the Canadian Foundation for Climate and Atmospheric Sciences www.cfcas.org)
MC2 - Host Meteorological Modelmodel dynamics • MC2 - „Mesoscale Compressible Community” model (Robert et al., 1985; Tanguay et al., 1990; Benoit et al., 1997) • Limited Area Model (LAM) • Semi-implicit, semi-lagrangian discretization of the Euler (compressible) equations. • A non-hydrostatic approach
MC2 - Host Meteorological ModelModel physics • Radiation : IR Garand (1983, Garand et Mailhot 1990); Solar: Fouquart-Bonnel (1980) • Surface boundary layer : Force-restore method (Deardorff 1978; Benoit et al. (1989) • Turbulence and Vertical diffusion: Turbulent Kinetic Energy (Benoit et al 1989) • Horizontal diffusion : Second order (KH * 2) • Orography treatment : Filtered over 3 grid points, subgrid scale orography
MC2-AQ: Air Quality Module • Gas phase chemistry (native to ADOM) • 32 advected species • 14 short-lived species • Aerosol chemistry and physics (CAM) • Dry and wet removal
MC2-AQ: Air Quality Module • Biogenic emissions (meteorology dependent) • Anthropogenic emissions • area emissions • point source emissions
ESCOMPTE Modellin Exercise Modelling strategy • Cascade mode (MC2-AQ - self nesting) • 0.9 deg resolution simulation over Europe • Objective analysis from CMC • Chemical boundary conditions from global CTM • 0.09 resolution simulation over Western Europe (centered over France) • 0.009 resolution simulation over Southern France
ESCOMPTE Modelling Exercise Model grid definition • Lat-Lon projection • 0.9 deg - 56 x 56 grid points • 0.09 deg - 207 x 207 grid points • 0.009 deg - 227 - 207 grid points • Gal-Chen vertical coordinate • model top - 20 000 m • 35 levels • bottom layer thickness ~17 m, • 25 levels below 5 km, 17 levels below 1500 m
ESCOMPTE Modelling Exercise Input data: emission • 0.9 deg - EMEP emission inventory • 0.09 deg - EMEP inventory combined with processed escompte inventory • 0.009 deg - ESCOMPTE emission inventory • convertion the detailed NMVOC inventory to mc2-aq VOC speciation • interpolation from UTM to latlon projection
ESCOMPTE Modelling Exercise Modelled period - IOP 2A • Time span: 20.06.2001 00 UTC - 24.06.2001 00 UTC • CMC Objective Analysis - every 6 hours • 0.9 deg: • 24.06.2001 00 UTC • 20.06.2001 00 UTC • Time step = 300 s • Boundary conditions from 0.9 deg run - every 1 hours • 0.09 deg: • 24.06.2001 00 UTC • 20.06.2001 12 UTC • Time step = 120 s • Boundary conditions from 0.09 deg run - every 1 hours • 0.009 deg: • 20.06.2001 18 UTC • Time step = 20 s • 23.06.2001 23 UTC
ESCOMPTE Modelling Exercise Model output • Required meteorological parameters: • temperature (~5 m) • sea level pressure • U,V wind • relative humidity [%] • Additional analysis (planned) • BL height • cloud cover • surface heat and momentum fluxes
ESCOMPTE Modelling Exercise Model output - sea level pressure
ESCOMPTE Modelling Exercise Model output - chemistry • Required chemical parameters: • O3, NO, NO2,CO (delivered) • RCHO, H2O2, ROOH, OH, HO2, RO2, HNO3, NOy(3D output) • SO2 (surface measurements) • Additional analysisconcentration of MC2-AQ hydrocarbon species vs. detailed emission inventory
Modelling issues • Underestimation of the temperature in the lowest model layer (is „force-restore” parameterisation proper for high resolution runs?) • Surface ozone underestimation (due to temperature underestimation ?) • Problems with reproducing of the diurnal cycle of ozone and temperature for stations located on the cost
Modelling issuesCostal stations: Toulon, Marseille Toulon Marseille
Modelling issues • Questionalble initial conditions for initial run (global CTM) • Low quality of boundary conditions from 10km run (results from 10 km simulation not satisfactory) • 1 km resolution model run is computationally expensive, and difficult to set up physical processes parameterisations
Modelling issues • Is model performance influenced by: • low quality of initial and boundary conditions • model configuration (e.g. surface energy balance parameterisation) • lack of chemical data assimilation ?
Planned improvements • New model run (3 km resolution) with more detailed surface scheme applied • Model results analysis against surface measurements: • Temperature • Wind speed ad wind direction • Humidity • Ozone, NOx and lumped VOC concentration • Model results analysis against vertical soundings