1 / 49

Diarylethenes as Functional Organic Dyes

Geneviève Bétournay Seminar – March 1 st 2012. Diarylethenes as Functional Organic Dyes. Outline. General introduction to functional dyes Introduction to photochromic dyes Specific Applications Diarylethenes and their properties Diarylethene syntheses Conclusion. What is a Dye?.

matsu
Download Presentation

Diarylethenes as Functional Organic Dyes

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. GenevièveBétournay Seminar – March 1st 2012 Diarylethenes as Functional Organic Dyes

  2. Outline • General introduction to functional dyes • Introduction to photochromic dyes • Specific Applications • Diarylethenes and their properties • Diarylethene syntheses • Conclusion

  3. What is a Dye? • Colorants absorb or emit light in the visible range (400-700 nm) • Dyes and pigments • Organic and inorganic • Natural and synthetic • Traditional applications • Textiles, paints and plastics • Food • Cosmetics and hair dyes Alizarin Magenta Polaroid SX-70 system Mauveine 1856 Sir William Henry Perkin Zollinger, H. Color Chemistry, 3rded; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.

  4. The Rise of Functional Dyes • Biomedical and biochemical • Tagging, Imaging • Military uses • IR Camouflage • Security • Security printing • Dye Lasers • Cameras • Ink-jet printers • Colour display devices • OLEDs • Dye Sensitized Solar Cells (DSSC) • Ophthalmic lenses

  5. Optoelectronic Applications 1 • Molecular Switch • Molecule that reversibly changes between two or more states in response to an external stimulus (Temperature, light, electrical current, pH, etc...) • Optical switch when the stimulus is light • Molecular computers, supramolecular chemistry, telecommunications • Device for recording and storing digital information (binary), written and read by a laser • CDs, DVDs, Blu-ray • Optical Data Storage Media Photochromic dyes

  6. Photochromism is... UV Vis. H. Dürr, H. Bouas-Laurent Pure Appl. Chem.2001, 73, 639.

  7. Reactions Occuring in Organic Photochromism • E-Z isomerization • Intramolecular hydrogen transfer • Intramolecular group transfer • Dissociation processes • Electron transfer H. Dürr, H. Bouas-Laurent Pure Appl. Chem.2001, 73, 639.

  8. Reactions occuring in Organic Photochromism • Pericyclic reactions – usually electrocyclizations • Spiropyrans (X = C) and • Spirooxazines (X = N) • Chromenes • Fulgides (X = O) and • Fulgimides (X = N) • Diarylethenes H. Dürr, H. Bouas-Laurent Pure Appl. Chem.2001, 73, 639.

  9. History of Organic Photochromic Dyes • 1867 Fritzsche - photochromism of tetracene • 40s – 60s Mechanistic and synthetic studies, especially by Hirschberg and Fischer • 1950 Hirschberg suggests the term “photochromism” • 1952 Discover photochromism of spiropyrans • 1956 Hirschberg compares photochromic systems to information stored and removed from a memory • Expansion in late 60s, revival in 80s H. Dürr, H. Bouas-Laurent Pure Appl. Chem.2001, 73, 639. Zollinger, H. Color Chemistry, 3rded; VHCA, Wiley-VCH: Zürich, Weinheim, 2003. Hirschberg, Y. J. Am. Chem. Soc.1956, 78, 2304.

  10. Spirooxazines and Chromenes in Commercial Applications • 1989 from Transitions Optical, Inc. • Biggest consumer of photochromic dyes • Cocktail of carefully matched compounds • These are T-type compounds (Thermally reversible) • Compounds will slowly revert back to the colourless form Spirooxazines Chromenes Corns, S. N., Partington, S. M. Towns, A. D. 2009, Color. Tech., 2009, 125, 249. Zollinger, H. Color Chemistry, 3rded; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.

  11. Photochromic Compounds for Optoelectronic Applications

  12. Photochromic Compounds for Optical Switches • Photo-optical switching: • Change in the refractive index • Switching the route of optical fiber networks • Photoelectrochemical switching: • Change in electrochemical properties • Modulation in molecular electronic devices information switch UV Vis. Irie, M. Chem. Rev. 2000, 100, 1685.

  13. Photochromic Compounds for Re-writable Optical Memory Media • Greater data density storage • Faster transfer rate 2 mm3 CD: 700 MB Toriumi, A., Herrmann, J. M., Kawata, S. Opt. Lett. 1997, 22, 555.

  14. Necessary Photochromic Propertiesfor Optoelectronic Applications • Thermal stability of both isomers • Low fatigue • Reaction induction at desired wavelengths • Rapid response and high sensitivity • Non destructive readout capability (Memories) H. Dürr, H. Bouas-Laurent Pure Appl. Chem.2001, 73, 639. Zollinger, H. Color Chemistry, 3rded; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.

  15. Thermal Stability

  16. Thermal Stability • Thermal stability is very important for optoelectronic applications • T-type (thermally reversible) photochromic compounds can’t be used... Δ information switch 0 1 0 0 1 0 1 1 1 0 Δ 0 1 0 0 1 0 0 1 1 0

  17. P-type (photochemically reversible) Photochromism • Reverse reaction only happens with light, thermally irreversible • 1981 – Heller et al. report P-type fulgides • Diarylethenes are the most promising candidates for optoelectronic applications Fulgides (X = O) Fulgimides (X = N) Diarylethenes Zollinger, H. Color Chemistry, 3rded; VHCA, Wiley-VCH: Zürich, Weinheim, 2003.

  18. Thermally Irreversible Photochromic Systems Kellogg et al., 1967 Long lifetime without light and O2 Masahiro Irie Muszkat and Fischer, 1967 Thermally unstable Reverts back quickly in the dark Irie and Mohri, 1988 Kellogg, R. M., Green, M. B., Wynberg, H. J. Org. Chem.1967, 32, 3093. Muszkat, K. A., Fischer, E. J. Chem. Soc. B, 1967, 662. Irie, M., Mohri, M. J. Org. Chem.1988, 53, 803.

  19. Aromatic Stabilization Effects T-type P-type * Derivatives Nakamura, S., Irie, M. J. Org. Chem.1988, 53, 6136 Patel, P. D., Masunov, A. E. J. Phys. Chem. C 2011, 115, 10292.

  20. Design for Thermal Stability • Thermally stable • Thermally unstable Irie, M. Proc. Jpn Acad. Ser. B2010, 86, 472. Irie, M. Chem. Rev. 2000, 100, 1685.

  21. Fatigue Resistance

  22. Fatigue Factors • Undesireable side reactions limit the number of cycles E/ZIsomerization Formation of oxidized products X Photodegradation Rearrangement Hanazawa, M., Sumiya, R., Horikawa, Y., Irie, M. J. Chem. Soc. Chem. Comm. 1992, 206. Irie, M., Lifka, T., Uchida, K., Kobatake, S., Shindo, Y. Chem. Comm.1999, 747. Taniguchi, H., Shinpo, A., Okazaki, T., Matsui, F., Irie, M. Nippon Kagaku Kaishi1992, 1138.

  23. Fatigue Processes in Dithienyl Compounds * The number of photochromic cycles at which the absorbance of the closed-ring isomer is 80% of its value in the first cycle. Irie, M., Lifka, T., Uchida, K., Kobatake, S., Shindo, Y. Chem. Comm.1999, 747. Irie, M. Pure & Appl. Chem. 1996, 1367. Higashiguchi, K., Matsudo, K., Kobatake, S., Yamada, T., Kawai, T., Irie, M. Bull. Chem. Soc. Jpn 2000, 2389.

  24. Reaction Induction at • Desired Wavelengths

  25. Reaction Induction at Desired Wavelengths • Specific applications require specific wavelengths • Depends on light source that will be used • Near-Field Optical Memory: conventional laser lights • Writing with 488 nm light (Ar ion laser) • Erasing with 633 nm light (He-Ne laser) • Change the compound’s structure in order to change its maximum absorbance (λmax)

  26. Structure Absorbance Relationship of Open-Ring Isomer • Dependant on upper cycloalkene unit • EWG increase λmax • Perfluorocyclopentene derivatives have λmax in the UV region • Maleic anhydride and maleimide derivatives have λmax > 400 nm 258 nm 417 nm 406 nm Hanazawa, M., Ritsuo, S., Horiikawa, Y., Irie, M. J. Chem. Soc. Chem. Commun. 1992, 206 (Perfluorocyclopentene) Uchida, K., Nakayama, Y., Irie, M. Bull. Chem. Soc. Jpn1990, 63, 1311. (Maleic anhydride) El Yahyaoui, A., Félix, G., Heynderickx, A., Moustrou, C., Samat, A. Tetrahedron 2007, 63, 9482. (Maleimide)

  27. Structure Absorbance Relationship of Closed-Ring Isomer • Extent of π-electron delocalization • Ring substituents have a big impact 425 nm 469 nm 534 nm 534 nm 562 nm 597 nm Irie, M. Chem. Rev. 2000, 100, 1685.

  28. Structure Absorbance Relationship of Closed-Ring Isomer   550 nm 620 nm 578 nm Thermally unstable Thermally stable 534 nm 562 nm 597 nm Irie, M. Chem. Rev. 2000, 100, 1685.

  29. Rapid Response and • High Sensitivity

  30. Response and Sensitivity • Response • How quickly the reaction occurs upon irradiation • Both cyclization and cycloreversion generally happen ≤ 10 picoseconds • Pico- and femtosecond laser photolysis experiments • How many reactions occur with a given amount of energy (light) • Quantified by and dependent on: • ε - Molar absorption coefficient • Φ - Quantum Yield • Sensitivity Miyasaka, H., Arai, S., Tabata, A., Nobuto, T., Mataga, N., Irie, M. Chem. Phys. Lett. 1991, 230, 249. (Laser photolysis studies)

  31. Molar Absorption Coefficient (ε) • For a any given compound: • Measure of how much light is absorbed at a given wavelength (M-1cm-1) • Intrinsic property Electron rich substituents ε Large π-conjugation Irie, M., Sakemura, K., Okinaka, M., Uchida, K. J. Org. Chem.1995, 8305. (electron donating groups) Bens, A. T., Frewert, D., Kodatis, K., Kryschi, C., Martin, H.-D., Trommsdorf, H. P. Eur. J. Org. Chem. 1998,, 2333. (polyene)

  32. Quantum yield • Antiparellel : Parallel ~ 1 : 1 • Photocyclization can only proceed from the antiparallel conformation • Maximum φ for ring closure is ~ 0.50 Increase amount of antiparallel conformer Irie, M. Chem. Rev. 2000, 100, 1685.

  33. Increasing the Cyclization Quantum Yield • Bridging the two thiophene units at 4 and 4’ positions (cyclophane) • Incorporation into a polymer backbone Takeshita, M., Nagai, M., Yamato T. Chem. Comm.2003, 1496. (Cyclophane) Stellacci, F., Bertarelli, C., Toscano, F., Gallazzi, M. C., Zolti, G., Zerbi, G. Adv. Mater. 1999, 11, 292.(Polymer backbone)

  34. Effect of π-conjugation on Quantum Yield of Cycloreversion Cycloreversion Quantum yield π-conjugation Irie, M., Eriguchi, T., Takada, T., Uchida, K. Tetrahedron 1997, 53, 12263.(Thiopheneoligomers)

  35. Non Destructive Readout (Optical Memory Media)

  36. Non Destructive Readout(Optical Memory Media) • High power laser for writing and erasing • Low power laser for reading • How do you detect absorbance changes without destroying the information? >106 readouts Tsujioka, T., Tatezono, F., Harada, T., Kuroki, K., Irie, M. Jpn. J. Appl. Phys. 1994, 33, 5788. (Superlow power readout) Tsujioka, T., Kume, M., Irie, M. Jpn. J. Appl. Phys. 1995, 34, 6439. (Superlow power readout)

  37. Readout Using a Different Energy • Detection using light whose energy cannot induce reaction • IR readout • Fluorescence readout Stellacci, F., Bertarelli, C., Toscano, F., Gallazzi, M. C., Zerbi, G. Chem. Phys. Lett. 1999, 302, 563.(IR readout) Tsivgoulis, G. M., Lehn, J.-M. Angew. Chem. Int. Ed. 1995,34, 1119. (Fluorescence readout) Norsten, T. R., Branda, N. R. J. Am. Chem. Soc. 2001, 123, 1784. (Fluorescence readout) Yeh, H.-C., Wu, W.-C., Chen, C.-T. Chem. Commun. 2003, 404. (Fluorescence readout)

  38. Gated Reactivity Hydrogen bonding arms Disulfide bonding arms • Information is “locked” • Release lock for erasing EtOH or Δ Irie, M., Miyatake, O., Uchida, K., Eriguchi, T. J. Am Chem. Soc. 1994, 116, 9894.

  39. Diarylethene • Synthesis

  40. Synthesis of Diarylethenes • In the last 10 years, different frameworks have appeared • Compounds containing a perfluorocyclopentene bridging unit exhibit best durability and photo-response • Maleimides for optical memory media Krayushkin, M. M., Yarovenko, V. N., Semenov, S. L., Zavarzin, I. V., Ignatenko, A. V., Martynkin, A., Y., Uzhinov, B. M. Org. Lett.2002,4, 3879. (2,5-dihydrothiophene) Chen, Y., Zeng, D. X., Fan, M. G. Org. Lett. 2003, 5, 1435.(2,5-dihydrothiophene) Chen, Y., Zeng, D. X., Xie, N., Dang, Y. Z. J. Org. Chem. 2005, 70, 5001.(2,5-dihydropyrrole) Krayushkin, M. M., Ivanov, S. N., Martynkin, A. Y., Lichitscky, B. V., Dudinov, A. A., Uzhinov, B. M. Russ. Chem. Bull., Int. Ed. 2001, 50, 116. (Heterocycles) Nakashima, T., Atsumi, K., Kawai, S., Nakagawa, T., Hasegawa, Y., Kawai, T. Eur. J. Org. Chem. 2007, 3212. (Heterocycles) Traven, V. F., Bochkov, A. Y., Krayushkin, M. M., Yarovenko, V. N., Nabatov, B. V., Dolotov, S. M., Barachevsky, V. A., Beletskaya, I. P. Org. Lett. 2008, 10, 1319. (Coumarinyl(thienyl)thiazoles) Krayushkin, M. M., Shirinian, V. Z., Belen’kii, L. I., Shadronov, A. Y., Vorontsova, L. G., Starikova, Z. A. Russ. Chem. Bull., Int. Ed. 2001, 51, 1510. (Squaric acid)

  41. Perfluorocyclopentene Bridging Unit Via Addition-Elimination • Low yields, hard to scale up • Octafluorocyclopentene • Expensive, not readily available, very volatile Irie, M., Sakemura, K., Okinaka, M., Uchida, K. J. Org. Chem.1995, 8305. Nakashima, H., Irie, M. Macromol. Chem. Phys.1999, 200, 683.

  42. PerfluorocyclopenteneBridging Unit Via McMurry Coupling • Single electron transfer from low valent Titanium Lucas, L. N., de Jong, J. J. D., van Esch, J. H., Kellogg, R. M., Feringa, B. L. Eur. J. Org. Chem. 2003, 155. Li, J. J. Name Reactions, 2nd ed.; Springer-Verlag, Berlin Heidelberg, 2003.

  43. Divergent Synthesis of Diarylethenes Lucas, L. N., de Jong, J. J. D., van Esch, J. H., Kellogg, R. M., Feringa, B. L. Eur. J. Org. Chem. 2003, 155.

  44. Divergent Synthesis of Diarylethenes Lucas, L. N., de Jong, J. J. D., van Esch, J. H., Kellogg, R. M., Feringa, B. L. Eur. J. Org. Chem. 2003, 155.

  45. The Suzuki-Miyaura Coupling in Diarylethene Synthesis Perfluorocyclopentene bridging unit Maleimide bridging unit Hiroto, S., Suzuki, K., Kimiya, H., Shinokubo, H. Chem. Commun. 2011, 47, 7149. (Perfluorocyclopentene) El Yahyaoui, A., Félix, G., Heynderickx, A., Moustrou, C., Samat, A. Tetrahedron 2007, 63, 9482. (Unsymmetrical maleimide) Herder, M., Pätzel, M., Grubert, L., Hecht, S. Chem. Commun. 2007, 47, 460. (Maleimide)

  46. Maleimide Bridging Unit Aldol type Yamaguchi, T., Matsu, M., Irie, M. Bull. Chem. Soc. Jpn2005, 78, 1145.

  47. Conclusions • Functional dyes have a wide variety of applications • Optoelectronic devices • Balance of structural features • Thermal stability • Low fatigue • Reaction induction at desired wavelength • Rapid response and high sensitivity • Non destructive readout (Memories) • Photochromic properties can be tuned for the specific application • Different synthetic approaches

  48. Crystalline Photochromism Irie, M. Proc. Jpn Acad. Ser. B2010, 86, 472.

  49. Acknowledgements Prof. Louis Barriault Francis Barabé Gabriel Bellavance StéphanieLanoix Patrick Levesque Joel Marcotte Philippe McGee Mathieu Morin Daniel Newbury Jason Poulin Dr. Guillaume Revol Travis Schwantje Boubacar Sow Past Members: Dr. David Lapointe Dr. MaximeRiou

More Related