1 / 30

Floating Car Data Projects Worldwide: A Selective Review

2. Outline. Floating Car Data introductionEuropeFranceGermanyBMW XFCD: Extended Floating Car DataDaimlerChrysler CityFCDGerman Aerospace CenterDdgMannesmanNetherlandsSwedenUnited KingdomJapanInternet ITSSmartWayInternational Standards. Probably not a complete list!. 3. Floating Car D

matty
Download Presentation

Floating Car Data Projects Worldwide: A Selective Review

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


    1. 1 Floating Car Data Projects Worldwide: A Selective Review Richard Bishop Bishop Consulting ITS America Annual Mtg April 26, 2004

    2. 2 Outline Floating Car Data introduction Europe France Germany BMW XFCD: Extended Floating Car Data DaimlerChrysler CityFCD German Aerospace Center Ddg Mannesman Netherlands Sweden United Kingdom Japan Internet ITS SmartWay International Standards

    3. 3 Floating Car Data Also known as probe data But probes can be company-sponsored and focused on particular routes of interest FCD refers to cars reporting data from routes chosen for non-traffic-probing reasons At least two areas of focus Urban: street conditions Taxis, delivery vehicles, etc. are effective probes Commuting: freeways private vehicles are the core data source

    4. 4 Floating Car Data Activities in Europe

    5. 5 France Mediamobile provides data primarily from the French road administration in the Paris area data is supplemented with FCD from taxis

    6. 6 Germany

    7. 7 BMW XFCD* Extended Floating Car Data (2nd generation) Reporting by exception On-board database constantly maintained by new data Data management messages from center Detection algorithms filter out false data Ex: Stopping to pick up passenger Applications Traffic Weather Precipitation Visibility Road Conditions

    8. 8 BMW XFCD: Vehicle Data Weather Speed, windshield wiper status, ABS signals, headlight status, navigation Allows estimates of precipitation, visibility, and road conditions Traffic Speed, acceleration Filtering Data (for data cleansing) Steering angle, door and window status, fuel level, tire pressure, gyro sensor, distance from surrounding objects, airbag status, crash sensors, rough road sensor, route navigation data, position data

    9. 9 BMW XFCD Stance Development of this technology is mainly the responsibility of the auto manufacturers By integrating on-board data with processing and vehicle communications systems

    10. 10 DaimlerChrysler CityFCD* 2nd generation FCD techniques to reduce message frequency On-board measurement of link travel time Link times are compared to on-board link time database Message transmitted only by exception to the database

    11. 11 DaimlerChrysler CityFCD (2): Conclusions optimized message generation process can reduce the amount of messages by factor of 40 Key information is time interval of congestion build-up congestion dissolution: minimum 2 (up to 4) FCD messages are necessary to detect the congestion fronts. 1.5 % FCD penetration rate gives sufficient service quality in urban traffic net.

    12. 12 DaimlerChrysler CityFCD (3): Conclusions 1.5 % FCD reporting detects incidents lasting longer than 20 minutes with 65 % probability 2 % FCD and 85 % probability are possible for incidents longer than 30 minutes Communications aspects: urban areas: GSM point-to-point broadcast between traffic centre and vehicle. Preferred communication channels are SMS and DAB; other possibilities are: GPRS (at present no equipment for simultaneous speech and data) RDS (less bandwidth)

    13. 13 Germany -- other Mannesman Initial pilot of 1000 vehicles to get 90% traffic condition detection, estimated that 80,000 100,000 vehicles needed with each at minimum 1500 km/year Conclusion: FCD alone is difficult -- total system should be composed of FCD and road-based sensing instrumentation DDG 25,000 equipped cars (BMW & VW) Separate services for each OEM Designed for three messages per car per day Currently processing 30M records per day

    14. 14 Germany -- other German Aerospace Center, Institute of Transport, Berlin Taxi-FCD System 2300 taxis involved Berlin: 300 taxis (5%) Nuremburg: 500 taxis (95%) Vienna: 600 taxis (12%) Munich: 220 taxis (6%) Stuttgart: 700 taxis (95%) Using fleet management data, therefore no communication expenses no on-board expenses for data collection Data structure: Vehicle ID Timestamp GPS position Taxi status Data sent at intervals of between 15-120 seconds Excellent information on rain, traffic

    15. 15 Netherlands Prelude Project using FCD in Rotterdam 60 vehicles took part in the study European Space Agency trials in Rotterdam

    16. 16 European Space Agency (1) Smart FCD: probe data collection via satellite Feasibility test with small number of vehicles in Rotterdam area Satellite approaches cover the entire road network Conclusions the collection of valid traffic information by means of satellite is technically feasible Data gathered shows that the coverage of the satellite system is adequate, even in densely urbanized areas. Analysis shows traffic jams are detected well with the algorithms used. Compared to conventional detection methods, this concept offers better coverage and better data at competitive costs. Additional studies and next steps now under examination. http://www.estec.esa.nl/wmwww/EMS/ARTESpresentation.htm

    17. 17 European Space Agency (2) Smart FCD Experiment

    18. 18 Sweden FCD (1) OPTIS: Optimized Traffic In Sweden 2002 Field Trial Partners: SAAB Automobiles, Scania Commercial Vehicles, Volvo Cars, Volvo Trucks, Swedish National Road Administration The OPTIS field trial comprised 223 probe equipped vehicles in the city of Gothenburg Use of Volvo OnCall telematics units

    19. 19 Sweden FCD (2) Simplicity in both probe and server probe collects and wirelessly transmits positions No calculations executed in the probe, therefore: no digital map in the vehicle geographically independent probe no need to update map information no advanced algorithms ??Cost of Simplicity: more intense communication between probe and server (compared to a more advanced probe calculating travel times directly) Travel times are calculated at link level for each probe using reported position data and timestamps

    20. 20 Sweden FCD (3) OPTIS evaluation results ??High quality travel information can be produced with the OPTIS concept. ??Alternative routes at major incidents can save as much as 25 minutes for those involved. ??The illustrated actual travel time and travel speed produced by OPTIS facilitate more accurate traffic messages provides TIC with a better overall picture of the current traffic situation The installation cost of the FCD solution is estimated to be half that of a fixed detector system.

    21. 21 Sweden FCD (4) Government Role The benefit and the road users willingness to pay are limited as long as the supply of useful travel data is small and irregular Government should finance implementation of the concept during the transitional period until there are enough equipped production vehicles on the market During transition period, promotion and development of the concept, including large scale demonstration projects Next steps: 2004 implementation in the three biggest cities in Sweden

    22. 22 United Kingdom (1) UK Road Traffic Advisor Objectives Evaluate New Two-Way Communication System Provide a National Test Site Develop In-Vehicle Electronics Develop an Open Architecture Product Development 350 km of M4 from airports to Swansea 80 5.8 Ghz beacons Project completed and not currently active

    23. 23 United Kingdom (2) UK -- Trafficmaster Company established in 1988 in UK collects and processes traffic data and offer a series of traffic information services. major part of data comes from stationary sensors; data is supplemented with FCD. Trafficmaster subscribers mount technical device in their cars that both transmit and receive traffic information. Trafficmaster is now also established in the continent of Europe Germany Italy.

    24. 24 Japan Smartway Deployment (1) Ministry of Land, Infrastructure, and Transport (MLIT) planning and researching floating car techniques for road administration ongoing since 1999 1999 16 cities 2001: congestion loss indicators via 4700 survey vehicles over 11,000 km of arterials 2002: buses as probes 2004: 10,000 probe survey vehicles Focus is on long term road management and evaluation not on real-time probe processing

    25. 25 Japan Smartway Deployment (2) Objectives: measuring national congestion loss and applying road performance monitoring developing and operating national probe information systems road project evaluation (before and after) researching road performance indicators planning of "national travel speed survey (FY2006)" environmental emission factor estimation

    26. 26 Japan (METI/JARI*) (1) Real-time probe processing using taxi fleet 1999: verification testing of prototype system 2001: large-scale field trial with 300 probe cars 2004: public field trial scheduled using practical implementation methods Primary sponsorship by the Ministry of Economy, Trade and Industry Supported by JSK companies (Denso) and Keio University. Applications: travel time information management of service vehicles eco-driving (promotion of energy-saving driving behavior) weather (rainfall) information Probe cars and probe car data center linked via the Internet.

    27. 27 Japan (METI/JARI*) (2) Integrated in-vehicle system collects sensor data stored onboard the vehicles. receives instructions from a data center transmitting relevant probe car data security functions against external attempts to access probe cars Data items: Windshield wiper operation Position Traveling speed Fuel consumption Engine rpm Position Turn Signals

    28. 28 Japan (METI/JARI*) (3) Techniques in place for addressing the issue of privacy in the collection of probe car data authentication encryption data overhead for security / privacy increased by 3-5 times compared to earlier systems without these features Applications selected take into account the market prospects for the service (scale of demand) business viability (advantages of using probe car data) potential for implementation (technical feasibility).

    29. 29 International Standards BMW: standardization is important in early development stages for inter-operability In-Vehicle Standard Sensor Interface developed by INVENT (Germany) Encoding of message contents Message protocols ISO TC204 (ITS) Working Group 16 (ITS Communications) Sub-working group 16.3 focuses on probe vehicle data elements which are transmitted to the probe processing center New participants are encouraged Membership open to US Working Advisory Group for WG16

    30. 30 Business Model Considerations Industry Reporting by exception essential and feasible Small fleet penetrations levels offer valuable data Multiple communications options exist Roles: Government can support / subsidize in early years to gain momentum Main responsibility is with auto manufacturers to equip vehicles Privacy issues being addressed in Japan

    31. 31 Thank you. www.IVsource.net (access to download presentation) richardbishop@mindspring.com

More Related