1 / 60

RESISTORS IN SERIES - In a series circuit, the current is the same

In conclusion, there are two requirements which must be met in order to establish an electric circuit. The requirements are:

may-webster
Download Presentation

RESISTORS IN SERIES - In a series circuit, the current is the same

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. In conclusion, there are two requirements which must be met in order to establish an electric circuit. The requirements are: • There must be an energy supply capable doing work on charge to move it from a low energy location to a high energy location and thus creating an electric potential difference across the two ends of the external circuit. • There must be a closed conducting loop in the external circuit which stretches from the high potential, positive terminal to the low potential negative terminal.

  2. RESISTORS IN SERIES - In a series circuit, the current is the same at all points along the wire. IT = I1 = I2 = I3  - An equivalent resistance is the resistance of a single resistor that could replace all the resistors in a circuit. The single resistor would have the same current through it as the resistors it replaced. RE = R1 + R2 + R3  - In a series circuit, the sum of the voltage drops equal the voltage drop across the entire circuit. VT = V1 + V2 + V3

  3. RESISTORS IN SERIES

  4. 12.4 Two resistances of 2 Ω and 4 Ω respectively are connected in series. If the source of emf maintains a constant potential difference of 12 V. a. Draw a schematic diagram with an ammeter and a voltmeter.

  5. 12.4 Two resistances of 2 Ω and 4 Ω respectively are connected in series. If the source of emf maintains a constant potential difference of 12 V. b. What is the current delivered to the external circuit? Re= R1 + R2 = 2 + 4 = 6 Ω = 2 A c. What is the potential drop across each resistor? V1 = I R1 = 2(2) = 4 V V2 = I R2 = 2(4) = 8 V

  6. PARALLEL CIRCUITS - In a parallel circuit, each resistor provides a new path for electrons to flow. The total current is the sum of the currents through each resistor. IT = I1 + I2 + I3 - The equivalent resistance of a parallel circuit decreases as each new resistor is added. - The voltage drop across each branch is equal to the voltage of the source. VT = V1 = V2 = V3

  7. RESISTORS IN PARALLEL

  8. KIRCHHOFF’S LAWS Anelectrical networkis a complex circuit consisting ofcurrent loops. Kirchhoff developed a method to solve this problems using two laws. Law 1.The sum of thecurrents enteringa junction is equal to the sum of thecurrents leavingthat junction. This law is a statement ofcharge conservation.

  9. A junction (j)refers to any point in the circuit where two or three wires come together. j

  10. KIRCHHOFF’S LAWS Law 2.The sum of theemfsaround any closed current loop is equal to the sum of all theIR dropsaround that loop. (Ohm’s Law:V = IR) This law is a statement ofenergy conservation.

  11. Gustav Robert Kirchhoff             (1824-1887)

  12. 12.5 The total applied voltage to the circuit in the figure is 12 V and the resistances R1, R2 and R3are 4, 3 and 6 Ω respectively. a. Determine the equivalent resistance of the circuit. R2 and R3 are in parallel (RP) Rp= 2 Ω RP and R1 are in series Re= 4 + 2 = 6 Ω

  13. b. What is the current through each resistor? I1 = 2 A (series) V1 = I1R1 = 2(4) = 8 V = 2 A The voltage across the parallel combination is therefore: 12 - 8 = 4 V each = 0.67 A = 1.33 A

  14. 12.6 Find the equivalent resistance of the circuit shown. 1 and 2 are in series: 1+ 2 = 3 Ω this combination is in parallel with 6: RP = 2 Ω this combination is in series with 3:2 + 3 = 5 Ω this combination is in parallel with 4: RP = 2.22 Ω = Req

  15. 12.7 A potential difference of 12 V is applied to the circuit in the figure below. a. Find the current through the entire circuit R1and R2are in parallel: RP= 2 Ω This combination is in series with R3: 2 + 4 = 6 Ω This combination is now in parallel with R4: = 3 Ω = Req

  16. = 4 A b. Find the current through each resistor. IT = I3 + I4 I3 = IT - I4 = 4 - 2 = 2 A = 2 A

  17. The voltage for the parallel combination is: V' = V - I3 R3 = 12 - (2)(4) = 4 V = 1 A I2= 2 - 1 = 1 A

  18. EMF AND TERMINAL POTENTIAL DIFFERENCE Every source of emf(Є) has an inherent resistance called internal resistance represented by the symbol r. This resistance is a small resistance in serieswith the source of emf. The actual terminal voltage VT across a source of emf with an internal resistance is given by: VT = Є - I r Units: Volts (V)

  19. 12.8 A load resistance of 8 Ω is connected to a battery whose internal resistance is 0.2 Ω a. If the emf of the battery is 12 V, what current is delivered to the load? Є = 12 V RL = 8 Ω r = 0.2 Ω = 1.46 A b. What is the terminal voltage of the battery? VT = Є - I r = 12 - 1.46(0.2) = 11.7 V

  20. 12.9 a. Determine the total current delivered by the source of emf to the circuit in the figure. V = 24 V. The resistances are 6, 3, 1, 2 and 0.4 Ω respectively. R1and R2are in parallel: RP= 2 Ω this combination is in series with R3: 2 + 1 = 3 Ω this combination is now in parallel with R4: RP = 1.2 Ω

  21. finally the internal resistance r is in series giving the equivalent resistance: Req= 1.2 + 0.4 = 1.6 Ω = 15 A

  22. b. What is the current through each resistor? VT = Є - I r = 24 - 15(0.4) = 18 V V4 = VT = 18 V I3 = IT - I4 = 15 - 9 = 6 A V3 = I3R3 = 6(1) = 6 V = 9 A V1 = V2 = 18 - 6 = 12 V each = 4 A = 2 A

  23. A + Rheostat Emf V - Source of EMF Rheostat Voltmeter Ammeter Ammeters and Voltmeters

  24. 0 10 10 20 20 N S Galvanometer The galvanometer uses torque created by small currents as a means to indicate electric current. A current Ig causes the needle to deflect left or right. Its resistance is Rg. The sensitivity is determined by the current required for deflection.

  25. Rg Ig I Rs Is Operation of an Ammeter The galvanometer is often the working element of both ammeters and voltmeters. A shunt resistance in parallel with the galvanometer allows most of the current I to bypass the meter. The whole device must be connected in series with the main circuit. I = Is + Ig The current Igis negligible and only enough to operate the galvanometer. [ Is >> Ig ]

  26. Rg Ig Rm I VB Operation of an Voltmeter The voltmeter must be connected in parallel and must have high resistance so as not to disturb the main circuit. A multiplier resistance Rmis added in series with the galvanometer so that very little current is drawn from the main circuit. The voltage rule gives: VB = IgRg + IgRm

  27. CAPACITORS IN SERIES AND PARALLEL These are the symbols used in different arrangements of capacitors:

  28. CAPACITORS IN SERIES

  29. CAPACITORS IN SERIES • Series capacitors always have the same charge. • The voltage across the equivalent capacitor Ceq is the sum of the voltage across both capacitors.

  30. CAPACITORS IN PARALLEL

  31. CAPACITORS IN PARALLEL • Parallel Capacitors always have the same voltage drop across each of them. • The charge on the equivalent capacitor Ceq is the sum of the charges on both capacitors.

  32. 19.9 a. Find the equivalent capacitance of the circuit. C2 = 2 μF, C3= 3 μF, C4 = 4 μF V = 120 V C2 and C4 are in series = 1.33 μF C3 is now in parallel with C2,4 Ceq= C3 + C2,4 = 3 +1.33 = 4.33 μF

  33. b. Determine the charge on each capacitor. The total charge of the system QT = CeqV = 4.33 (120) = 520 μC Q3 = C3V = 3(120) = 360 μC Q2and Q4have the same charge since they are in series: Q2 = Q4 = QT - Q3 = 520 - 360 = 160 μC Q3 = 360 μC, Q2 = Q4 =160 μC

  34. c. What is the voltage across the 4 μF capacitor? = 40 V The remaining voltage (120 - 40 = 80 V) goes through the C2capacitor.

  35. RC CIRCUITS A resistance-capacitance (RC) circuit is simply a circuit containing a battery, a resistor, and a capacitor in series with one another. An RC circuit can store charge, and release it at a later time. A couple of rules dealing with capacitors in an RC circuit: 1. An empty capacitor does not resist the flow of current, and thus acts like a wire. 2. A capacitor that is full of charge will not allow current to flow, and thus acts like a broken wire.

  36. RC Circuits When the switch is closed, the capacitor will begin to charge.

More Related