480 likes | 724 Views
ISTANBUL TECHNICAL UNIVERSITY. Electrochemical Impedance & Morphologic Study of Poly( Propylenedioxythiophene) -Thin Films on Carbon Fiber. Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology. Conducting Polymer (Nano) / Carbon Fiber(Micro). Energy storage
E N D
ISTANBUL TECHNICAL UNIVERSITY Electrochemical Impedance & Morphologic Study of Poly( Propylenedioxythiophene) -Thin Films on Carbon Fiber Prof.Dr.A.Sezai SARAC Department of Chemistry & Polymer Science & Technology
Conducting Polymer (Nano)/ Carbon Fiber(Micro) • Energy storage • (batteries,supercapacitors) • Electrochromic devices • (smart Windows, mirrors, IR and microwave shutters) • Antistatic coatings • (displays, flat TV screens) • Semiconductor devices • (Solar Cells) • Corrosion Protection • Mechanical actuators • Bioapplications • (drug delivery systems, artificial muscles, biosensors)
Supercapacitors(Electrochemical capacitors) Supercapacitors store the electric energy in an electrochemical double layer (Helmholtz Layer) formed at a solid / electrolyte interface. Advantages Highenergy density& rates ofcharge&discharge Little degradation-longer cycle life small chemical charge transfer Good reversibility Low toxicity High cycle efficiency (95% >)
Cyclic Voltammetry (CV) doping; reduction or oxidation. Oxidation leaves "holes" in the form of positive charges that can move along the chain Polymer Electrogrowth extremely useful for studying electrode reaction mechanisms &electropolymerization Red ↔Ox + e-→X Monomer Free Electropolymerization mechanism of 5-membered heterocycles
Electrochemical Impedance Spectroscopy (AC) The excitation signal , expressed as a function of time , has the form E(t) = E0 cos (wt) In a linear system, the response signal , It , is shifted in phase (Ф) and has a different amplitude I(t) = I0 cos (wt - Ф ) DC ohms law R= E/I =Zo [ cos(wt) / cos(wt – Ф ) ] Z = E(t) / I(t) Using EULER’s relationship Exp ( j Ф ) = cos Ф + jsin Ф Z = Z0(cos Ф + jsin Ф )
Poly(3,4-alkylenedioxythiophene) Derivatives LONGER CONJUGATION LENGTH MORE ORDERED POLYMERS STABLE OXIDIZED FORM LOW Eox Poly(3,4-dialkylthiophene) Alkyl substitution to the monomer, lowers the EOX ProDOT-(Me)2 ProDOT-(Bu)2 Substitution at the 3- and 4- positions CONDUCTIVITY INCREASING DEGREE OF CONJUGATION STERIC INTERACTIONS J.Roncali,Chem.Rev.1997,97,173
EXPERIMENTAL -ELECTROCHEMICAL Cyclic Voltammetric (CV)Coating: 10 mM ProDOT-(Bu)2 in 0,1 M NaClO4/ACN &Bu4NPF6/ACN at diff.scan rates (mV s-1 ) 0,0 V – 1,6 V Electrochem.Impedance Spectroscopy (EIS) 0,1 M NaClO4/ACN 100 kHz -10 mhz 3 ELECTRODE SYSTEM W.E. : CFSE , ITO ,Pt R.E. : Ag wire (checked aginst [FcII(CN)6]4- [FcIII(CN)6]3- + e-) C.E. : Pt wire
Atomic Force Microscopy (AFM) NON-CONTACT Depending on the situation, forces that are measured in AFM include mechanical contact force, Van der Waals forces, capillary forces, chemical bonding, electrostatic forces, magnetic forces, solvation forces etc. --the three dimensional topography
Cyclic Voltammetric film growth 100 mV/s EDX of film Bandgap- of film on ITO 5mM ProDOT-Me2 depositedat 100 mV/s, 10cycle in 0.1 M Bu4NPF6/ACN EDX results of coatings
SEM & AFM Electrocoated 2,2-Dimethyl-3,4 Propylenedioxythiophene on CFME in 0.1 M Bu4NPF6/ACN at scan rate: 400 mV/s, 10 cycle. SCAN RATE EFFECT 400 mV/s uncoated
SEM & AFM Electrocoated 2,2-Dimethyl-3,4 Propylenedioxythiophene on CFME 20 mV/s & 10 cycle 20 mV/s uncoated CF
SEM and AFM of PProDOT-(Me)2/CFME coated at 10 mV/s and 10 cycle 10 mV/s Sarac AS,Schulz B,Gencturk A.,GilsingHD ,Surface Eng. (2008) in Press
100 mV/s SEM picture of PProDOT-(Me)2/CFME in 0,1 M Bu4NPF6/ACN scan rate:100 mV/s ,10 cycle, 2 different magnifications
Capacitance vs scan rate • Cyclovoltammetric (C = charge density/scan rate) & • Nyquist plots (at low frequency) in monomer free solution & • (polymer film obtained at10 cycle, 10 mM monomer, 0.1 M Bu4NPF6/ACN). Sarac AS,Schulz B,Gencturk A.,GilsingHD ,Surface Eng. (2008) in Press
DIFFERENT CHARGE (CYCLE NO) 20th cycle coated CFME uncoated CFME 40th cycle 40th cycle PProDOT-(Me)2 in 0,1 M Bu4NPF6/ACN 100 mV/s
Capacitance vs scan no 5mM ProDOT-Me2 depositedat 100 mV/sin 0.1 M Bu4NPF6/ACN Sarac AS, Gilsing HD, Gencturk A, et al.Prog.Org.Coat. 60 (2007) 281
parametersof the model- EIS • 1.Bulk Electrolyte resistance (Rs) • 2.Double layer capacitance(Cdl) • 3.Polarization resistance(R1) • 4.Charge transfer resistance(R2) • 5.Warburg impedance(W) • 6.CF & film capacitance • 7.Constant phase element (Q) EQUIVALENT CIRCUIT R(C(R(Q(RW))))(C(R)) Cdl Ccf Rs R1 RCF R2 • . • Ates M,Castillo J,Sarac AS, Schuhmann W, Microchim Acta 160(2008)247 • Sarac AS ,Sipahi M, Parlak EA ,Gul A , Ekinci E,Yardim F , Prog Org.Coat. 62 (2008) 96 • SaracAS, Sezgin S, AtesM, Turhan CM, Parlak EA, Irfanoglu B , Prog. Org. Coat. 62( 2008) 331
Potential dependence the parameterscalculated from the model Rs,the bulk solution resistance of the polymer and the electrolyte, Cdl, double layer capacitance, R1 is the resistance of the electrolyte.(Polarization) R2 is the charge transfer, and W is the Warburg impedance of the polymer. (Electrochemicaldeposition is performed at different molarities of ProDOT-Me2 at100 mV/s, 20 cycle in 0.1 M Bu4NPF6/ACN).
Poly(3,4-alkylenedioxythiophene) Derivatives 2,2 -dibutylpropylene dioxythiophene (PProDOT(Bu)2)
Atomic Force Microscopy (AFM)&SEM Electrolyte effect PProDOT-(Bu)2/0,1 M Bu4NBF4/ACN PProDOT-(Bu)2/0,1 M Bu4NPF6/ACN A.S. Sarac, A. Gencturk, H.D. Gilsing, B. Schulz,C.M. Turhan, J.NanoSci.& Nanotech. 2008- In press
Atomic Force Microscopy (AFM) Electrolyte effect PProDOT-(Bu)2/0,1 M LiClO4/ACN PProDOT-(Bu)2/0,1 M Et4NClO4 /ACN
Atomic Force Microscopy (AFM) 0.1 M NaClO4/ACN 10 cycle 100 mV/s NaClO4 /ACN 30 cyc 100 mV/s PProDOT-(Bu)2/0,1 M NaClO4 /ACN A.S. Sarac, A. Gencturk, H.D. Gilsing, B. Schulz,C.M. Turhan, J.NanoSci.& Nanotech. – 2008- In press
Atomic Force Microscopy (AFM) Electrolyte Sarac, AS. Gencturk, H.D. Gilsing, B. Schulz,C.M. Turhan, J.NanoSci.and Tech. – 2008- in press
Cycle Effect of PProDOT-Bu2/Single CFME 1st CYCLE
CycleEffect of PProDOT-Bu2/SCFME 1st CYCLE Randless Sevcik Equation : ip = (2.69x105) n3/2ACD1/2γ1/2 n : number of electrons, ν scan rate (V / sec)F :Faraday’s constant (96485 C / mol) A : Electrode area (cm2)R: Universal gas constant (8.314 J / mol K) T : Absolute temperature (K), and D is the analyte’s diffusion coefficient (cm2/sec).
Cycle Effect of PProDOT-Bu2/SCFME 3 CYCLES 5 CYCLES (Scan rate)1/2 Scan rate (Scan rate)1/2 Scan rate
Cycle Effect of PProDOT-Bu2/SCFME 10CYCLES 15CYCLES 10 CYCLES 15 CYCLES (Scan rate)1/2 Scan rate (Scan rate)1/2 Scan rate
Cycle Effect of PProDOT-Bu2/SCFME 20 CYCLES Sarac AS, Gilsing HD, Gencturk A, et al.Prog. Org. Coat. 60 (2007) 281
Cycle Effect of PProDOT-Bu2/SCFME AFM 1 cycle 5 cycles 3 cycles 10 cycles 15 cycles 20 cycles
Cycle Effect of PProDOT-Bu2/SCFME EIS BODEPHASE Sarac AS, Gencturk A, Schulz B, et al.Journal of Nanoscience and Nanotechnology 7 ((2007)3543
Cycle Effect of PProDOT-Bu2/SCFME Cdl : 1 / IZimI BODE MAGNITUDE
Cycle Effect of PProDOT-Bu2/SCFME NYQUIST CLF : 1/ 2π f Zim
Cycle Effect of PProDOT-Bu2/SCFME EQUIVALENTCIRCUIT BODEPHASE
Cycle Effect of PProDOT-Bu2/SCFME EQUIVALENT CIRCUIT BODE
Cycle Effect of PProDOT-Bu2/SCFME EQUIVALENTCIRCUIT NYQUIST PLOT
Cycle Effect of PProDOT-Bu2/SCFME EQUIVALENT CIRCUIT R(C(R(Q(RW))))(C(R)) Cdl Ccf Rs R1 RCF R2
Cycle Effect of PProDOT-Bu2/SCFME EQUIVALENTCIRCUIT Cdl Ccf Rs R1 RCF R2 Rs,the bulk solution resistance of the polymer and the electrolyte, Cdl, double layer capacitance, R1 is the resistance of the electrolyte. R2 is the charge transfer, and W is the Warburg impedance of the polymer.
Potential Effect of PProDOT-Bu2/CFSE EQUIVALENT CIRCUIT
Potential Effect of PProDOT-Bu2/CFSE 0.1 – 1.1 V After 1.1 V
Substrate Effect of PProDOT-Bu2 Pt SCFE ITO
Conclusion • Equivalent circuit simulations corresponding to the polymer modified microelectrodes calculated and suggested values of the each component was ingood correlation withexperimental data. • Typical CV of the polymeric film exhibits very well-defined and reversible redox processes. • Porous nanostructures were obtained with high capacitances • The impedance changes with film thickneses & morphologies, between 0.1 V and 1.4 V. • A potential range was found to be the most suitable condition for the PProDOT-Bu2 modified microelectrodes as supercapacitor components
acknowlegements • Dr.B.Schulz – Potsdam University & IDM Teltow Germany • Dr.Gilsing –IDM Teltow Germany • M.Turhan –Univ.of Nurnberg &Istanbul Tech Univ • A.Gencturk - Istanbul Tech Univ
Thank you Istanbul Bosphorous