480 likes | 779 Views
A Hist?ria num relance.... ? 1783 ? Jonh Michell, previu que se uma estrela possui-se uma massa 20 a 30 vezes maior que o Sol originaria um Buraco Negro;? In?cio do s?c. XIX ? Pierre Simon (Marqu?s de Laplace), formulou a mesma hip?tese de Michell, de forma independente;? In?cio do s
E N D
1. Buracos Negros
2. A História num relance... ? 1783 – Jonh Michell, previu que se uma estrela possui-se uma
massa 20 a 30 vezes maior que o Sol originaria um Buraco Negro;
? Início do séc. XIX – Pierre Simon (Marquês de Laplace), formulou
a mesma hipótese de Michell, de forma independente;
? Início do séc. XX – Karl Schwarzschild defendeu a hipótese de
que quando uma estrela se contrai, atinge um ponto em que a sua
gravidade é tão elevada que a luz não lhe consegue escapar;
? 1928 – Chandrasekhar, calculou que uma estrela com cerca de uma
vez e meia a massa do Sol não seria capaz de se sustentar contra a
sua própria gravidade – massa limite de Chandrasekhar (1,2 massas
solares);
3. ? 1928 – Landau, descobriu que estrelas acima da massa limite de
Chandrasekhar, livrar-se-iam de parte da sua massa até estarem abaixo da massa limite, ou então colapsariam num ponto de densidade infinita;
? 1939 – Oppenheimer, estudou o que aconteceria com as estrelas,
hipótese de Landau, sob o ponto de vista da Relatividade Geral.
O limite Oppenheimer – Volkoff conhecido hoje mostra
que um objecto com cerca de 3 massas solares poderia dar origem a
uma estrela de neutrões estável; se o objecto tivesse mais de 3
massas solares poderia colapsar na forma de um buraco negro.
? 1967 – Wheeler, usou pela primeira vez o nome de “buraco negro”, é por
isso considerado o “pai “dos buracos negros, foi este astrónomo que
enunciou o teorema “os buracos negros não têm cabelo”. Demonstrou que
as únicas propriedades de um buraco negro são a sua massa, rotação e
carga;
4. Como se descobriu o primeiro Buraco Negro? O primeiro Observatório de Raio-X, foi colocado em órbita pelos EUA, de uma plataforma italiana no Oceano Índico, tendo recebido o nome de Uhuru;
Em 1971, descobriu uma fonte brilhante de Raio-X na constelação de Cygnus (Cisne), a que se deu o nome de Cygnus X-1;
A Cygnus X-1 tinha o tamanho de um asteróide e era visível a distâncias interestelares e encontrava-se no mesmo lugar de uma estrela supergigante azul quente;
5. A fonte de Raio-X só poderia ser um objecto invisível, que pesando dez vezes mais que a massa solar, entrou em colapso até atingir o volume de um asteróide. Este objecto só poderia ser um Buraco Negro.
6. A Geometria Euclidiana e os Buracos Negros ? O primeiro homem a falar de uma geometria que descrevia o espaço-tempo na ausência de um campo gravítico foi Euclides – Geometria Euclidiana;
? Actualmente a Geometria Euclidiana não é aceite no estudo dos Buracos Negros, usando-se duas novas geometrias, a de Schwarschild e de Kerr.
7. A Evolução Estelar
Fig.1 – Imagem do Sol.
As estrelas durante a sua vida passam por várias fases de evolução,
tal como o nosso Sol está a passar, dependendo da sua massa. Esta
evolução apresenta uma primeira fase que é comum a todas as estrelas,
onde se despreza a sua massa:
8.
Fig.2 – Fases da evolução de uma estrela.
1 – Nuvem de gás; 4 – Maturidade;
2 – Estrela embrionária; 5 – Gigante Vermelha;
3 – Combustão Solar;
9.
Fig.3 – Fases da evolução de uma estrela (massa superior a 10 massas
solares).
6 – Supernova;
7 – Após a explosão da Supernova;
8 – Estrela de Neutrões;
10.
Fig.4 – Fases da evolução de uma estrela (massa igual ou inferior à massa do
Sol).
9 – Nuvem em contracção; 10 – Disco giratório;
11 – Sistema embrionário; 12 – Fase semelhante à actual
do Sistema Solar;
13 – A estrela em expansão; 14 – Clarão de Hélio;
15 – Nebulosa Anelar; 16 – Anã-Branca/Anã-Preta;
11.
Fig.5 – Explosão de uma estrela em forma de supernova.
12. As estrelas no fim da sua evolução “morrem”. Este fenómeno pode
ocorrer de várias formas:
? Anã Branca: corresponde à fase final da vida de uma estrela de
pequena massa, na qual a fonte de energia termonuclear se esgotou.
Uma anã branca não é mais do que uma estrela fóssil.
Fig.6 - O gás de uma estrela cai na anã branca seguindo as
suas linhas de campo magnético.
13. ?Anã castanha: Objecto mais “leve” que as outras estrelas, tendo uma massa muito reduzida, não sendo assim suficiente para aumentar a sua temperatura, não conseguindo por isso desencadear reacções de fusão nuclear;
Fig.7 - À esquerda temos uma imagem da estrela 15Sge e a sua companheira, a anã-castanha 15Sge B. À direita temos uma imagem obtida, removendo da imagem a luz da estrela principal, cujo centro se encontra circulado.
14. ? Anã Preta: representa a forma final de uma anã castanha ou anã branca. É um objecto frio e denso que deixa de irradiar energia tornando-se invisível;
? Estrela de Neutrões: formam-se quando uma supernova explode. Têm poucos quilómetros de diâmetro e são inteiramente constituídas por neutrões.
São cobertas por rígidas crostas, e constituídas por elementos como o ferro. Os neutrões que constituem estas estrelas poderão decompor-se em quarks. Esta é a última fase antes de se tornar num buraco negro.
Estas estrelas são dotadas de rápida rotação e fortemente magnetizadas, produzindo feixes de ondas de rádio.
15.
Fig.8 – Anatomia de uma estrela de neutrões.
16.
Fig.9 – Esquema da evolução estelar.
Fig. 10 – Representação de um buraco negro, estrela
de neutrões e de uma anã-branca.
17.
Fig.11 – Imagem Raios-X da Puppis A, onde existe uma
estrela de neutrões com 12Km de diâmetro.
Fig.12 – No centro da galáxia M87 onde se pensa existir
um candidato a buraco negro.
Fig.13 – Nesta imagem, temos uma provável
representação de anãs-brancas, que se encontram
circuladas.
18. Anatomia dos Buracos Negros
O que é um Buraco Negro?
? Surge através da morte de uma estrela super massiva;
? São uma região no espaço em que existe muita massa concentrada, onde é impossível a qualquer objecto escapar ao seu campo gravitacional;
? São objectos massivos que distorcem o espaço-tempo.
19. ? É delimitado por algo a que se chama horizonte de acontecimentos, que funciona como fronteira;
? Ao contrário do que parece, não se encontra estático mas sim girando a uma velocidade igual ou maior à da luz.
Fig.14 – Concepção artística de um Buraco Negro.
20. Algumas galáxias onde se pensa existir buracos negros...
Fig.15 – Galáxia de Andrómeda.
21.
Fig.16 – Nebulosa de Caranguejo.
22.
Fig.17 – Nebulosa de Cisne.
23.
Fig.18 – Nebulosa Carina.
24. A Família dos Buracos Negros
Agrupam-se em 3 tipos:
1. O buraco negro de Schwarzschild:
? não tem rotação e carga eléctrica;
? singularidade rodeada por um horizonte de acontecimentos.
Fig.19 – Constituição de um Buraco Negro de Schwarzschild.
25.
2. O buraco negro de Reisner-Nordstrom:
? tem carga eléctrica;
? não tem rotação;
? tem dois horizontes de acontecimentos.
Fig.20 – Constituição de um Buraco Negro de Reisner-Nordstrom.
26.
3. O buraco negro de Kerr:
? Tem rotação;
? A singularidade é alongada em forma de anel;
? Tem dois horizontes de acontecimentos.
Fig.21 – Constituição de um Buraco Negro de Kerr.
27. A Esfera de Fotões ?É nesta esfera que os fotões orbitam o Buraco Negro.
Fig.22 – Esfera de Fotões de um Buraco Negro.
28. Força Centrífuga Invertida ? A força centrífuga é uma força imaginária, que nos leva a continuar um movimento em linha recta.
? Ao aproximarmo-nos de um buraco negro seriamos puxados por esta força, mas de forma invertida, para o seu interior.
? Numa região contida entre r=3GM/c2 no horizonte as forças centrífugas levam os objectos a descreverem movimentos circulares.
29. Discos de Acreção ? A matéria ao aproximar-se do campo gravitacional de um buraco negro acaba por formar um disco que gira em torno do próprio buraco – disco de acreção;
? A matéria que constitui o disco é formada principalmente por
núcleos de hidrogénio e electrões;
? Ao mesmo tempo que parte da matéria é puxada para dentro do
buraco outra parte é ejectada formando jactos de luz.
Fig.23 – Disco de acreção.
30.
Fig.24 – Discos de acreção
31. O Campo Gravitacional de um Buraco Negro
? É o campo de acção do Buraco Negro (do centro ao horizonte de acontecimentos), tem várias consequências:
1. A Força de Atracção dos Buracos Negros não deixa escapar nada, nem mesmo a luz;
Fig.25 – Buraco Negro sugando uma estrela.
32. 2. O efeito que provoca sobre a radiação: o desvio para
o vermelho (redshift) causado pelo campo gravitacional;
Z é o redshift;
M é a massa do objecto que está provocando o redshift;
R é a distância que separa a fonte emissora da massa Me;
G é a constante gravitacional;
33. Qual o tamanho de um buraco negro?
34.
Fig. 27 – Neste esquema podemos ver a relação que parece
existir entre a massa de um buraco negro e a massa
da região onde este se encontra.
35. Radiação de um Buraco Negro ? Stephen Hawking previu que os buracos negros possam emitir
uma leve radiação:
?formam-se no espaço pares de partículas/antipartículas (uma com energia positiva outra com energia negativa);
?um dos pares pode ser puxado para dentro do Buraco Negro enquanto o outro consegue escapar.
?parecerá que o buraco negro emitiu uma partícula de radiação.
?A partícula sugada pelo Buraco tem energia negativa, fazendo diminuir a temperatura e a massa.
36.
Fig.28– Libertação de energia Fig.29 - Um buraco negro faz
de um Buraco Negro. com que o material que o
circunda gire à sua volta. Ao
mesmo tempo liberta energia
sob a forma de raios-X.
37. Raio Crítico e o Horizonte de Acontecimentos ? Schwarzschild usou a teoria da relatividade de Einstein para explicar a forma como o espaço tempo é distorcido à volta de uma porção de matéria;
? Schwarzschild, induziu a ideia de que quando uma estrela se contrai, atinge um ponto em que a gravidade é tão elevada que nem a luz escapa.
Fig.30 – Karl Schwarzschild (1873 – 1916)
38.
Rsch – raio de Schwarzschild;
G – constante gravitacional;
m – massa do corpo;
c – velocidade da luz;
? O raio crítico delimita uma zona que é chamada de “horizonte
de eventos” ou “horizonte de acontecimentos”.
? O raio crítico de um buraco negro é a zona que se
encontra entre o limite do horizonte, até ao ponto onde se atinge a
Singularidade.
39.
Fig. 31 – Raio Crítico e o Horizonte de Acontecimentos.
40. Tipos de Buracos Negros ?Podem-se classificar, conhecendo:
? momentum angular (medida da sua rotação)
? carga eléctrica
? massa
Buracos Negros Estelares
Buracos Negros Supermassivos
41. Velocidade de Escape Gráf.1 e 2 - Representação da trajectória de uma bola lançada da superfície de um planeta.
42. A velocidade de escape depende de:
? Massa do planeta;
? Distância a que o corpo se encontra do centro do planeta.
m – massa dos corpos
G – constante gravitacional
R – raio do planeta
Ve – velocidade de escape
43. Como é que evaporam? ? Em 1970, Stephen Hawking afirmou que os Buracos Negros não eram totalmente negros, sendo assim emitem radiação.
? À medida que a percentagem de radiação aumenta a massa diminui.
? O Buraco Negro continua a irradiar energia, até desaparecer.
44. Explosão de um Buraco Negro ? Stephen Hawking, previu em 1974, que os Buracos Negros podem brilhar intensamente diminuindo de tamanho até à sua explosão.
? Descobriu que o campo gravitacional de um Buraco Negro emite energia, diminuindo a massa do buraco.
? A “radiação de Hawking” é desprezável para a maioria dos buracos, mas os muito pequenos emitem energia rapidamente até explodirem violentamente;
45. Como descobrir um Buraco Negro? ? Para se descobrir um buraco negro procuram-se pistas, tais como:
? correntes de gás quente arrancada a uma estrela;
? actividade no núcleo das galáxias;
? quasares;
? explosões de raios gama;
? procura de miragens cósmicas;
? pesquisa de “rugas” no espaço – ondas gravitacionais;
46. Quasares ? Descobertos em 1963 por Maarten Schidt;
? Contêm os maiores buracos negros do Universo;
? Encontram-se a distâncias interestelares;
? A existência de uma grande quantidade de energia numa região tão pequena deve-se à gravidade exercida por um buraco negro supermassivo;
Fig.32 – Quasar no coração de uma nebulosa.
47. Buracos Brancos ? Com a versão “tempo – invertida” de um buraco negro, obtemos uma região do espaço tempo onde nada pode entrar – Buraco Branco;
? Não existem equações viáveis para explicar o facto da sua existência;
48. Buracos de Minhoca ? Foram descobertos através de equações do campo de Flamm, em 1916;
? Jonh Wheeler estudou-os exaustivamente;
? Surge da junção de um Buraco Negro com um Buraco Branco
? Pensa-se que permitam viagens interestelares entre dois universos diferentes – wormholes transitáveis;
? Para as viagens interestelares pensa-se que também existam os túneis de Krasnikov e os modelos de Alcubierre;
49.
Fig. 33 – Buraco negro que dá origem a um "wormhole transitável”.
Fig. 34 – Forças de maré na superfície de um buraco negro estelar.
50. Relatividade ?Newton foi o primeiro físico a descrever a deformação do espaço tempo gerada pelos corpos na ausência de um campo gravitacional – teoria newtoniana.
?Einstein reformulou esta teoria dizendo que as Leis da Física são iguais para todos os corpos do Universo;
? Einstein demonstrou que:
E =__Mc2__
(1-v2/c2)1/2
E = energia
M = massa
c = velocidade da luz
v = velocidade do objecto que se move
51. ? Um dos grandes princípios da teoria da relatividade é o princípio da equivalência.
Fig.35 – Objectos deformando o espaço-tempo.
Fig. 36 – Representação de alguns corpos como o Sol, uma anã
branca, uma estrela de neutrões e um buraco negro, e a
respectiva deformação no espaço-tempo.
52. “ Os Buracos Negros são objectos que de
buraco não têm nada mas de negro têm
tudo.”
Autores do trabalho:
Joana Rua
Sérgio Batista
Silvia Lopes
Alunos do 10º ano de Científico-Natural da Escola Secundária do Entroncamento.
53.
Fim