490 likes | 746 Views
Learn about different aircraft structures, materials used in construction, types of stress, airframe units, flight controls, and trim controls. Discover how pitch, roll, and directional controls affect aircraft maneuverability.
E N D
Aircraft Structures • Truss-type Structures • Had struts and wire-braced wings • Occupants sat in open cockpits • Cockpits fabric-covered • Stressed-skin Structures • All of the structural loads are carried by the skin. • Thin wood skin • Or aluminum-alloy sheets
Aircraft Structures • Monocoque • Virtually no internal framework • Semi-monocoque • Internal arrangement of formers and stringers is used to provide additional rigidity and strength to the skin.
Airframe Units: • Fuselage • Wings • Stabilizers • Flight control surfaces • Landing gear
Airframe Units: Vertical Stabilizer Horizontal Stabilizer Rudder Elevator Cowling Flap Aileron
Structural Loads/Stress • Five Types Of Stress • Tension • Compression • Bending force • Torsion • Shear force
Structural Loads/Stress • Deformation • Nonpermanent Deformation • Deformation disappears when the load is removed. • Permanent Deformation • Wrinkles observed on top of wing and bottom of horizontal stabilizer. • Stretch marks on the bottom of the wing or top o the stabilizer. (positive g’s)
Materials For Aircraft Construction • Wood • Aluminum Alloys • Honeycomb • Magnesium • Stainless Steel
Structures • Wing Construction Truss-type
Structures • Stressed-skin Wing Construction
Control Surface Construction • Control Surface Flutter • Control Surface must be mass balanced so that their center of gravity does not fall behind their hinge line.
Fuselage Construction • Truss Fuselage construction • Pratt truss • Warren truss • Stressed-skin Structure • Monocoque • Semi - Monocoque • Pressurized Structure
Pitch Control • Elevators • Sole function is to change the angle of attack of the airplane, which alters its speed, lift and drag.
Pitch Control • Stabilator • All-movable tail • Anti-servo tab • Ruddervators • Provides both longitudinal and directional stabilization and control.
Lateral Or Roll Control • Ailerons • Rolling action produced is the primary method of lateral control on most aircraft.
Directional Control • Adverse aileron yaw • The aileron that moves downward creates lift and induced drag. • Induced drag pulls the nose of the airplane around in the direction opposite the way the airplane should turn.
Directional Control • Rudder • Rotates the airplane about its vertical axis (Yawing) • Also provides a form of roll control because the application of rudder causes yaw which will induce a roll.
Trim Controls • Trim Tabs • Balance Tab • Anti-Servo Tab • Servo Tab • Spring Tab • Adjustable Stabilizer
Servo Tab • Used on large aircraft when the control forces are too great for the pilot to manually move. • Flight control column moves the tab on the control surface and this aerodynamically moves the main control surface.
Aerodynamically Balanced Control Surface • Overhang deflects to the opposite side of the fuselage from the main rudder surface to produce an aerodynamic force that aids the pilot.
Flaps • Change the camber of the wing and increase both its lift and drag for and given angle of attack • Moved by cables form an electric motor driven jackscrew.
Leading Edge Devices • Delays the the airflow separation caused by a stall to a higher angle of attack. • Increases the energy of the air flowing over the surface.