90 likes | 101 Views
Learn how to solve expectations for monthly income based on schooling levels and gender, exploring salary discrimination in the process for comprehensive understanding in bivariate and trivariate cases. Self-created data illustrates the concepts effectively.
E N D
The Law of Iterated Expectation Nancy Zhang
Easy Example 1bivariate random variables Let X=schooling of the person Y=monthly income of the person Solve the expectation of Y from the following table x=1 have an university degree or above x=2 don’t have an university degree
Example 1 (continued) Solution: E(X)=E(Y|X=1)*P(X=1) +E(Y|X=2)*P(X=2) • X=x1,x2…,xn • E (Y)=E(Y|X=x1)*P(X=x1)+E(Y|X=x2)*P(X=x2) +…+E(Y|X=xn)*P(Y|X=xn) =∑x E(Y|X=xi)*P (X=xi)
Example 1 (continued) Think E(Y|X=xi) as one random variable E(Y|X=xi) =Ai: E(Y)=∑x Ai*P(X=xi)=E(Ai)=E[E(Y|X=xi)]=E[μY|X] *This process is called average out X. Recall the formula: E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X]
Intermediate E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 trivariate random variables Let X=schooling of the person Y=monthly income of the person Z=gender (Z=1 men; Z=2 women) a. Check if there is salary discrimination on women b. Solve the expectation of Y from the following table
E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Solution: Step 1:average out X a. When Z=1, Use the formula above, average out X: let: E(Y|X=xi,Z=1)=a1 E(A|Z=1)= ∑x E(Y|X=xi,Z=1)*P(X=xi) = E[E(Y|X=xi,Z=1)|Z=1] = 1200*0.5+400*0.5=800
E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Similarly, when Z=2, average out X: E(A|Z=2) = ∑x E(Y|X=xi,Z=2)*P(X=xi) = 800*0.5+500*0.5=650 As 650<800, the conditional expectations suggest that there is salary discrimination on women.* *Note: self-created data, not based on real survey.
E(Y)= ∑x E(Y|X=xi)*P (X=xi) = E[E(Y|X=xi)] = E[μY|X] Example 2 (continued) Step 2: average out Z: Again use the formula for bivariate random numbers: E(Y)= ∑z E(A|Z=zi)*P(Z=zi) = E[E(A|Z=zi)] = E{E[E(Y|X, Z)|Z]} = 0.5*800+650*0.5=725
Hard The law of iterated expectation • For a bivariate random variables, X and Y: • E(Y) = E[E(Y|X)] • For a trivariate random variables, X, Y and Z • E(Y|X,Z) = conditional mean given X and Z. • E(Y|Z) = E[E(Y|X,Z)|Z] • E(Y|X) = E[E(Y|X,Z)|X] • E(Y) = E{E[E(Y|X,Z)|Z]} • (note: taking expectations in several iterations.)