130 likes | 544 Views
4.6 Generating functions. 4.6.1 Generating functions Let S={n 1 •a 1 ,n 2 •a 2 ,…,n k •a k }, and n=n 1 +n 2 +…+n k =|S| , then the number N of r-combinations of S equals (1)0 when r>n (2)1 when r=n (3) N=C(k+r-1,r) when n i r for each i=1,2,…,n.
E N D
4.6 Generating functions • 4.6.1 Generating functions • Let S={n1•a1,n2•a2,…,nk•ak}, and n=n1+n2+…+nk=|S|,then the number N of r-combinations of S equals • (1)0 when r>n • (2)1 when r=n • (3) N=C(k+r-1,r) when nir for each i=1,2,…,n. • (4)If r<n, and there is, in general, no simple formula for the number of r-combinations of S. • A solution can be obtained by the inclusion-exclusion principle and technique of generating functions. • 6-combination a1a1a3a3a3a4
xi1xi2…xik= xi1+i2+…+ik=xr • r-combination of S • Definition 1: The generating function for the sequence a0,a1,…,an,… of real numbers is the infinite series f(x)=a0+a1x+a2x2+…+anxn+…, and if only if ai=bi for all i=0,1, …n, …
We can define generating function for finite sequences of real numbers by extending a finite sequences a0,a1,…,an into an infinite sequence by setting an+1=0, an+2=0, and so on. • The generating function f(x) of this infinite sequence {an} is a polynomial of degree n since no terms of the form ajxj, with j>n occur, that is f(x)=a0+a1x+a2x2+…+anxn.
Example: (1)Determine the number of ways in which postage of r cents can be pasted on an envelope using 1 1-cent,1 2-cent, 1 4-cent, 1 8-cent and 1 16-cent stamps. • (2)Determine the number of ways in which postage of r cents can be pasted on an envelope using 2 1-cent, 3 2-cent and 2 5-cent stamps. • Assume that the order the stamps are pasted on does not matter. • Let ar be the number of ways in which postage of r cents. Then the generating function f(x) of this sequence {ar} is • (1)f(x)=(1+x)(1+x2)(1+x4)(1+x8)(1+x16) • (2)f(x)=(1+x+x2)(1+x2+(x2)2+(x2)3)(1+x5+(x5)2)) • =1+x+2x2+x3+2x4+2x5+3x6+3x7+2x8+2x9+2x10+3x11 +3x12+2x13+ 2x14+x15+2x16+x17+x18。
Example: Use generating functions to determine the number of r-combinations of multiset S={·a1,·a2,…, ·ak }. • Solution: Let br be the number of r-combinations of multiset S. And let generating functions of {br} be f(y), • (1+y+y2+…)k=? f(y)
Example: Use generating functions to determine the number of r-combinations of multiset S={n1·a1,n2·a2,…,nk·ak}. • Solution: Let generating functions of {br} be f(y), • f(y)=(1+y+y2+…+yn1)(1+y+y2+…+yn2)…(1+y+y2+…+ynk) • Example: Let S={·a1,·a2,…,·ak}. Determine the number of r-combinations of S so that each of the k types of objects occurs even times. • Solution: Let generating functions of {br} be f(y), • f(y)=(1+y2+y4+…)k=1/(1-y2)k • =1+ky2+C(k+1,2)y4+…+C(k+n-1,n)y2n+…
Example: Determine the number of 10-combinations of multiset S={3·a,4·b,5·c}. • Solution: Let generating functions of {ar} be f(y), • f(y)=(1+y+y2+y3)(1+y+y2+y3+y4)(1+y+y2+y3+y4+y5) • =1+3y+6y2+10y3+14y4+17y5+18y6+17y7+14y8+10y9+6y10+3y11+y12
Example: What is the number of integral solutions of the equation • x1+x2+x3=5 • which satisfy 0x1,0x2,1x3? • Let x3'=x3-1, • x1+x2+x3'=4, where 0x1,0x2,0x3'
Exponential generating functions • Recurrence Relations P13, P100
Exercise 1. Let S be the multiset {·e1,·e2,…, ·ek}. Determine the generating function for the sequence a0, a1, …,an, … where an is the number of n-combinations of S with the added restriction: • 1) Each ei occurs an odd number of times. • 2) the element e2 does not occur, and e1 occurs at most once. • 2. Determine the generating function for the number an of nonnegative integral solutions of 2e1+5e2+e3+7e4=n