1 / 39

MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu

CS173. Lecture 8: Transcriptional regulation II. MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu. Announcements. HW1 due today. Thoughts and comments? HW2 will be out by midnight Halfway feedback today . Announcements.

megan
Download Presentation

MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CS173 Lecture 8: Transcriptional regulation II MW  11:00-12:15 in Beckman B302 Prof: Gill Bejerano TAs: Jim Notwell & Harendra Guturu http://cs173.stanford.edu [BejeranoWinter12/13]

  2. Announcements • HW1 due today. Thoughts and comments? • HW2 will be out by midnight • Halfway feedback today http://cs173.stanford.edu [BejeranoWinter12/13]

  3. Announcements http://cs173.stanford.edu [BejeranoWinter12/13]

  4. TTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAGTTATATTGAATTTTCAAAAATTCTTACTTTTTTTTTGGATGGACGCAAAGAAGTTTAATAATCATATTACATGGCATTACCACCATATACATATCCATATCTAATCTTACTTATATGTTGTGGAAATGTAAAGAGCCCCATTATCTTAGCCTAAAAAAACCTTCTCTTTGGAACTTTCAGTAATACGCTTAACTGCTCATTGCTATATTGAAGTACGGATTAGAAGCCGCCGAGCGGGCGACAGCCCTCCGACGGAAGACTCTCCTCCGTGCGTCCTCGTCTTCACCGGTCGCGTTCCTGAAACGCAGATGTGCCTCGCGCCGCACTGCTCCGAACAATAAAGATTCTACAATACTAGCTTTTATGGTTATGAAGAGGAAAAATTGGCAGTAACCTGGCCCCACAAACCTTCAAATTAACGAATCAAATTAACAACCATAGGATGATAATGCGATTAGTTTTTTAGCCTTATTTCTGGGGTAATTAATCAGCGAAGCGATGATTTTTGATCTATTAACAGATATATAAATGGAAAAGCTGCATAACCACTTTAACTAATACTTTCAACATTTTCAGTTTGTATTACTTCTTATTCAAATGTCATAAAAGTATCAACAAAAAATTGTTAATATACCTCTATACTTTAACGTCAAGGAGAAAAAACTATAATGACTAAATCTCATTCAGAAGAAGTGATTGTACCTGAGTTCAATTCTAGCGCAAAGGAATTACCAAGACCATTGGCCGAAAAGTGCCCGAGCATAATTAAGAAATTTATAAGCGCTTATGATGCTAAACCGGATTTTGTTGCTAGATCGCCTGGTAGAGTCAATCTAATTGGTGAACATATTGATTATTGTGACTTCTCGGTTTTACCTTTAGCTATTGATTTTGATATGCTTTGCGCCGTCAAAGTTTTGAACGATGAGATTTCAAGTCTTAAAGCTATATCAGAGGGCTAAGCATGTGTATTCTGAATCTTTAAGAGTCTTGAAGGCTGTGAAATTAATGACTACAGCGAGCTTTACTGCCGACGAAGACTTTTTCAAGCAATTTGGTGCCTTGATGAACGAGTCTCAAGCTTCTTGCGATAAACTTTACGAATGTTCTTGTCCAGAGATTGACAAAATTTGTTCCATTGCTTTGTCAAATGGATCATATGGTTCCCGTTTGACCGGAGCTGGCTGGGGTGGTTGTACTGTTCACTTGGTTCCAGGGGGCCCAAATGGCAACATAGAAAAGGTAAAAGAAGCCCTTGCCAATGAGTTCTACAAGGTCAAGTACCCTAAGATCACTGATGCTGAGCTAGAAAATGCTATCATCGTCTCTAAACCAGCATTGGGCAGCTGTCTATATGAATTAGTCAAGTATACTTCTTTTTTTTACTTTGTTCAGAACAACTTCTCATTTTTTTCTACTCATAACTTTAGCATCACAAAATACGCAATAATAACGAGTAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTTTCCTACGCATAATAAGAATAGGAGGGAATATCAAGCCAGACAATCTATCATTACATTTAAGCGGCTCTTCAAAAAGATTGAACTCTCGCCAACTTATGGAATCTTCCAATGAGACCTTTGCGCCAAATAATGTGGATTTGGAAAAAGAGTATAAGTCATCTCAGAGTAATATAACTACCGAAGTTTATGAGGCATCGAGCTTTGAAGAAAAAGTAAGCTCAGAAAAACCTCAATACAGCTCATTCTGGAAGAAAATCTATTATGAATATGTGGTCGTTGACAAATCAATCTTGGGTGTTTCTATTCTGGATTCATTTATGTACAACCAGGACTTGAAGCCCGTCGAAAAAGAAAGGCGGGTTTGGTCCTGGTACAATTATTGTTACTTCTGGCTTGCTGAATGTTTCAATATCAACACTTGGCAAATTGCAGCTACAGGTCTACAACTGGGTCTAAATTGGTGGCAGTGTTGGATAACAATTTGGATTGGGTACGGTTTCGTTGGTGCTTTTGTTGTTTTGGCCTCTAGAGTTGGATCTGCTTATCATTTGTCATTCCCTATATCATCTAGAGCATCATTCGGTATTTTCTTCTCTTTATGGCCCGTTATTAACAGAGTCGTCATGGCCATCGTTTGGTATAGTGTCCAAGCTTATATTGCGGCAACTCCCGTATCATTAATGCTGAAATCTATCTTTGGAAAAGATTTACAATGATTGTACGTGGGGCAGTTGACGTCTTATCATATGTCAAAGTCATTTGCGAAGTTCTTGGCAAGTTGCCAACTGACGAGATGCAGTAACACTTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCACAAACTTTAAAACACAGGGACAAAATTCTTGATATGCTTTCAACCGCTGCGTTTTGGATACCTATTCTTGACATGATATGACTACCATTTTGTTATTGTTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATGTTTTCAATGTAAGAGATTTCGATTATCTTATAGTTCATACATGCTTCAACTACTTAATAAATGATTGTATGATAATAAAG Genome Content http://cs173.stanford.edu [BejeranoWinter12/13]

  5. Gene Regulation Some proteins and non coding RNAs go “back” to bind DNA near genes, turning these genes on and off. Gene activation: Gene DNA Proteins http://cs173.stanford.edu [BejeranoWinter12/13]

  6. Transcription Activation contd. http://cs173.stanford.edu [BejeranoWinter12/13]

  7. Transcription Activation Terminology: • RNA polymerase • Transcription Factor • Transcription Factor Binding Site • Promoter • Enhancer • Gene Regulatory Domain TF DNA http://cs173.stanford.edu [BejeranoWinter12/13]

  8. Transcription activation “loop” Transcription factors bind DNA, turn on or off different promoters and enhancers, which in-turn turn on or off different genes, some of which may themselves be transcription factors, which again changes the presence of TFs in the cell, the state of active promoters/enhancers etc. Proteins DNA transcription factorbinding site Gene DNA http://cs173.stanford.edu [BejeranoWinter12/13]

  9. IFN beta enhancer http://cs173.stanford.edu [BejeranoWinter12/13]

  10. Transcription Measurements Some measurement techniques: • Chromatin Immunoprecipitation • Transcription output: • Transfection • Transgenics • Genome Engineering • Chromosome Conformation Capture http://cs173.stanford.edu [BejeranoWinter12/13]

  11. Transcription Activation Properties Observed Properties: • Most TF binding site basepair preferences are independent of each other. • TFs can synergize to turn gene activity on. • Behavior can change in different conditions. • TFs bind to hundreds and thousands of different targets in a single condition. • Enhancers complement in different tissues. http://cs173.stanford.edu [BejeranoWinter12/13]

  12. Gene Regulation is HOT • Gene regulation is currently one of the hottest topics in the study of the human genome. • Large projects are pouring lots of money to generate large descriptive datasets. • The challenge now is to glean logic from these piles. Measured >100 TFsin >70 cellular conditions. • How does TF binding determine its output: gene expression? http://cs173.stanford.edu [BejeranoWinter12/13]

  13. System output measurements • Measure non/coding gene expression! • 1. First generation mRNA (cDNA) and EST sequencing: In UCSC Browser: http://cs173.stanford.edu [BejeranoWinter12/13]

  14. 2. Gene Expression Microarrays (“chips”) http://cs173.stanford.edu [BejeranoWinter12/13]

  15. 3. RNA-seq • “Next” (2nd) generation sequencing. http://cs173.stanford.edu [BejeranoWinter12/13]

  16. Gene Finding II: technology dependence Challenge: “Find the genes, the whole genes, and nothing but the genes” We started out trying to predict genes directly from the genome. When you measure gene expression, the challenge changes:Now you want to build gene models from your observations. These are both technology dependent challenges. The hybrid: what we measure is a tiny fraction of the space-time state space for cells in our body. We want to generalize from measured states and improve our predictions for the full compendium of states. http://cs173.stanford.edu [BejeranoWinter12/13]

  17. 4. Spatial-temporal maps generation http://cs173.stanford.edu [BejeranoWinter12/13]

  18. Gene Expression Causality • Measuring gene expression over time provides sets of genes that change their expression in synchrony. • But who regulates whom? • Some of the necessary regulators may not change their expression level when measured, and yet be essential. • “Reading” enhancers can provide gene regulatory logic: • If present(TF A, TF B, TF C) then turn on nearby gene X http://cs173.stanford.edu [BejeranoWinter12/13]

  19. Some Computational Challenges in Gene Regulation • Transcription factor binding site discovery • Technology-dependent challenge in constructing the correct binding site model (e.g. motif) from the measurements. • Eg, ChIP produces sequences of 100-200bp.Your motif of length 4-20 is there somewhere. • Find the most enriched model in the set of sequences you obtained. • Methods range between full enumeration, heuristic/probabilistic searches, and hybrids. http://cs173.stanford.edu [BejeranoWinter12/13]

  20. Transcription factor motif discovery: different technologies • SELEX = Systematic Evolution of Ligands by Exponential Enrichment • PBM = Protein Binding Microarrays http://cs173.stanford.edu [BejeranoWinter12/13]

  21. Transcription factor binding site prediction • Given the genome, and possibly some cell measurements predict (all and nothing but) the binding sites of a given transcription factor (in a/all context/s). http://cs173.stanford.edu [BejeranoWinter12/13]

  22. Enhancer Prediction • How do TFs “sum” together to provide the activity of an enhancer? • A network of genes? http://cs173.stanford.edu [BejeranoWinter12/13]

  23. Enhancer Prediction • Given a sequence of DNA predict: • Is it an enhancer? Ie, can it drive gene expression? • If so, in which cells? At which times? • Driven by which transcription factor binding sites? • Given a set of different enhancers driving expression in the same population of cells: • Do they share any logic? If so what is it? • Can you generalize this logic to find new enhancers? http://cs173.stanford.edu [BejeranoWinter12/13]

  24. Biology is empirical: you predict, and you measure! • Measuring is great. It allows you to check your assumptions and improve your models until you get it. • Some difficulties associated with gene regulation: • Single cell measurements are rare. You most often measure some “average” over a population of cells. • The population of cells is seldom in sync (same state). • The closer a population of cells is to its in vivo state the less homogeneous it is. • The closer a population of cells is to its in vivo state the harder (time, effort, money) it is to measure it. http://cs173.stanford.edu [BejeranoWinter12/13]

  25. Biology is empirical, you predict, and you measure! • Some more difficulties associated with gene regulation: • A family of TFs often has very similar binding motifs • Expression pattern may be different (but unknown to you). • Family members may have different protein-protein interaction (PPI) domains which are also important. • The genome is pleiotropic ( = good for all contexts). • If an enhancer you are studying is in fact good for multiple contexts they will be overlaid on each other in sequence and make prediction (and disentanglement) harder. http://cs173.stanford.edu [BejeranoWinter12/13]

  26. Transcription Factors Large “fan outs” revisited • TFs reproducibly bind to thousands of genomic locations almost anywhere we’ve looked. • Gene regulation forms a dense network. • However, when such a TF is perturbed (over expressed or silenced) only a fraction of the genes it binds next to change their expression levels. http://cs173.stanford.edu [BejeranoWinter12/13]

  27. Genomics vs. Genetics • Last but not least – genomics is descriptive. • It can show you “everything”. • Eg: all the location a given transcription factor is bound to the genome (reproducibly) in a given cell state. • Which of these bindings actually matters? no or near no effect adverse effect on cell frequency adverse effectobservable in experiments effect on cell http://cs173.stanford.edu [BejeranoWinter12/13]

  28. Transcription factors “rule” We have learned (in a dish) to: 1 control differentiation 2 reverse differentiation 3 hop between different states Cellular reprogramming is done by adding to the cell large quantities of a small number of the “right” TFs. These somehow “reset” cell state. http://cs173.stanford.edu [BejeranoWinter12/13]

  29. Transcription Regulation is not just about activation http://cs173.stanford.edu [BejeranoWinter12/13]

  30. Transcriptional Repression An equally important but less visible part of transcription (tx) regulation is transcriptional repression (that lowers/ablates tx output). • Transcription factors can bind key genomic sites, preventing/repelling the binding of • The RNA polymerase machinery • Activating transcription factors(including via competitive binding) • Some transcription factors have stereotypical roles as activators or repressors. Likely many can do both (in different contexts). • DNA can be bent into 3D shape preventing enhancer – promoter interactions. • Activator and co-activator proteins can be modified into inactive states. Note: repressor thus can relate to specificDNA sequences or proteins. http://cs173.stanford.edu [BejeranoWinter12/13]

  31. Transcriptional Output Prediction All these can increase or decrease tx output: • Adding/repressing different proteins • Modifying DNA bases • Adding genomic context • Changing cellular context Repression logic is harder to tease out.(need positive controls) http://cs173.stanford.edu [BejeranoWinter12/13]

  32. Transcription can only happen in open Chromatin Chromatin / Proteins Genome packaging in fact provides a critical layer of gene regulation. DNA / Proteins http://cs173.stanford.edu [BejeranoWinter12/13]

  33. Gene Activation / Repression via Chromatin Remodeling • A dedicated machinery opens and closes chromatin. • Interactions with this machinery turns genes and/or gene regulatory regions like enhancers and repressors on or off(by making the genomic DNA in/accessible) http://cs173.stanford.edu [BejeranoWinter12/13]

  34. Insulators Insulators are DNA sequences that when placed between target gene and enhancer prevent enhancer from acting on the gene. • Known insulators contain binding sites for a specific DNA binding protein (CTCF) that is involved in DNA 3D conformation. • However, CTCF fulfills additional roles besides insulation. I.e, the presence of a CTCF site does not ensure that a genomic region acts as an insulator. TSS2 TSS1 Insulator http://cs173.stanford.edu [BejeranoWinter12/13]

  35. Cis-Regulatory Components • Low level (“atoms”): • Promoter motifs (TATA box, etc) • Transcription factor binding sites (TFBS) • Mid Level: • Promoter • Enhancers • Repressors/silencers • Insulators/boundary elements • Cis-regulatory modules (CRM) • Locus control regions (LCR) • High Level: • Epigenetic domains / signatures • Gene expression domains • Gene regulatory networks (GRN) http://cs173.stanford.edu [BejeranoWinter12/13]

  36. Signal Transduction • Everything we discussed so far happens within the cell. • But cells talk to each other, copiously. http://cs173.stanford.edu [BejeranoWinter12/13]

  37. Gene Regulation II Chromatin / Proteins To be continued… Extracellular signals DNA / Proteins http://cs173.stanford.edu [BejeranoWinter12/13]

  38. (On Mondays) ask students to stack the chairs without wheels at the back of the room at the end of class. http://cs173.stanford.edu [BejeranoWinter12/13]

  39. http://cs173.stanford.edu [BejeranoWinter12/13]

More Related