1 / 13

Statement of Work

Statement of Work. NRL EEE/ESG And SRSS. First Year EEE. Assist in determining if the CoABS architecture/technology can successfully transition to U.S. Navy Fleet communications systems and networks.

megara
Download Presentation

Statement of Work

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Statement of Work NRL EEE/ESG And SRSS

  2. First Year EEE • Assist in determining if the CoABS architecture/technology can successfully transition to U.S. Navy Fleet communications systems and networks. • Assist in determining if the current and planned U.S. Navy Fleet communications systems and networks support agent and application IT requirements. • Evaluate the CoABS grid technology for appropriateness and sufficiency for the conduction of Fleet Battle Experiments and to the support of Fleet operations. • Assist in the identification of components and develop an architectural map of U.S. Navy Fleet communications systems and networks to be utilized in Fleet Battle Experiments (FBE) related to EEE. • Assist in the development of experiment and scenario lists for FBE exercises detailing expectations and any known required information infrastructure, connectivity, services, and software component activities

  3. First Year EEE Continued • Develop consolidated requirements list of IT, application, and software infrastructure services for FBE exercises. • Develop evaluation metrics of software infrastructure alternatives that are compliant with the requirements of the FBE tasks and expectations related to EEE. • Utilize CMU’s experience with the CoABS Grid, Jini, and other Discovery, Lookup, Matchmaking, and Agent Coordination Infrastructures to evaluate the Grid against these metrics. • Examine Jini Publish/Subscribe services and subsequent Grid Publish/Sub­­scribe technologies to be evaluated for applicability to task. • List benefits and limitations of viable Agent-Based-Computing alternatives and indicate enhancements required to fulfill FBE objectives. • Propose initial enhancements to the Grid that will be required to fulfill FBE/EEE expectations. • Propose set of experiments to identify functionality and scalability tradeoffs to further guide development. Deliverables:  *        Evaluation Report of Grid applicability to FBE/EEE tasks.  *        Design documents for Grid upgrades and experiments.

  4. Second Year EEE • Conduct experiments as detailed in year one to examine Grid characteristics. • Conclude evaluation of Grid applicability to FBE/EEE initiatives. • Design interconnection coordination and interaction profiles for meaningful assembly of ad-hoc distribution of networked devices (sensors) • Develop interconnection management software and API to allow application/agent level control and/or awareness of network fabric. • Implement coordination protocols to achieve communication goals within security and power constraints of sensor node model. • Implement ns-2 coordination protocols, agents, middleware, and services. • Develop Web Services-based WSDL descriptors and advertisements and SOAP interfaces for generic Sensor objects and identified middleware/services. • Develop DAML-S descriptors and advertisements for generic templates and taxonomies for Sensor objects to extend sensor-based web services to support viable semantic representations and interactions

  5. Second Year EEE - Continued • Perform ns-2 simulations to test and evaluate network coordination communication protocols. Contrast tradeoffs of payload size, power, security, and increased functionality. • Tie ns-2 simulated sensor clusters to ModSAF simulation environment using interoperability components to examine sensor groups in larger contexts. Deliverables: *         Documented autonomous sensor object taxonomy and semantic representations, as well as web-based service interface templates. *         Prototype sensor coordination software agents. *         Simulation environment to examine horizontal coordination of ad-hoc sensor groups. *         Interoperation between ns-2 sensor simulations and SAF scenario simulation.

  6. Third Year EEE • Develop hierarchy architecture of sensor peer node systems to allow appropriate connectivity between individual sensor devices, communications coordinators, task agents, plan agents, and higher-level Grid (or other) Infrastructure services. • Develop advertisement and interaction descriptors with DAML, RDF, WSDL, SOAP, etc to integrate multiple vertical coordination opportunities for hierarchical systems. • Implement connectivity and deployment coordination agents to tie Sensor Grids to Information Grids and Command and Control Grids. (Whether CoABS Grid, Web, or some other). • Develop ns-2 control scenarios to model sensor infrastructure activities, coordination, and utility • Develop ns-2 framework objects based on designs and architectures defined in the previous years of this project to provide boilerplate integration of new sensor, IT, and agent technologies.

  7. Third Year EEE Continued • Create Developers and Users guides to support ongoing and subsequent projects. Deliverables: *Software design and prototype systems to support vertical hierarchy to enhance and expand C2 management, coordination, and control of heterogeneous sensor systems. *Interoperability between simulation, prototype, web, Semantic Web, and Grid based objects. *Documentation to support ongoing development and utilization of foundation technologies.

  8. First Year SRSS • Identify appropriate technologies to be modeled in ns-2 MANET/sensor simulations that provide application-level “publish/subscribe” (or service/peer discovery) mechanisms. • Identify other Middleware/Services that would be beneficial to networked sensor networks, and profile/define-architecture for future inclusion in ns-2 simulation environment. • Design extensions to ns-2 required for implementing application-level agents that utilize multiple (and possibly new and previously unimplemented) transport mechanisms. The classes should fit within an extensible framework to allow for the future creation of simulated “sensor applications” which use NRL’s sensor stimulant/detector extensions. • Utilize Experience with ModSAF/OTBSAF to develop parallel and/or linking architectures to extend modeling and simulation usefulness.

  9. First Year SRSS Continued • Examine feasibility of accessibility and semantic representations of sensors using current schemas (such as WSDL/SOAP and DAML-S) for machine readable descriptions of sensor objects. • Utilize Experience with CoABS, RETSINA, and other Service and Agent Infrastructures to develop a Taxonomy of Publish and Subscribe architectures. Deliverables: *        Design documents of ns-2 protocol, sensor, agent, and service extensions, and, both environment and sensor representations in semantic markup format *        Taxonomy document describing Publish/Subscribe architecture.

  10. Second Year SRSS • Implement extensions to ns-2 (as identified in year one) in the form of application-level agents using appropriate transport mechanisms. The classes created will fit within an extensible framework that allows the creation of simulated “sensor applications” utilizing NRL’s sensor stimulant/detector extensions. • Construct Web Services-based WSDL descriptors and advertisements and SOAP interfaces for actual SRSS physical sensor devices. • Construct DAML-S semantic descriptors and advertisements for actual SRSS physical sensor devices. • Conduct simulations to evaluate trade-offs in performance of application-level and/or network level organizational and discovery mechanisms in sensor environments. (Anycast, Multicast, SLP, SSDP, A2A, etc.) • Implement alternative technologies in ns-2 MANET/sensor simulations to provide application-level “publish/subscribe” (or service/peer discovery) mechanisms

  11. Second Year SRSS Continued • Conduct simulations to examine and report on trade-offs in performance in above technologies in sensor environment. • Conduct simulations to examine and report on trade-offs in performance in application-level and/or network level “network-interconnection coordination tasks” in sensor environment. (Performance is in terms of speed, power use, complexity, redundancy, etc) Deliverables: *         Low level (native), web-based (SOAP/WSDL), and Semantic Web (DAML-S) representations of actual sensor devices. *         Simulation environments for operational evaluation of sensor configuration and management. *         Report on tradeoffs and payoffs of utilization of different technologies.

  12. Third Year SRSS • Implement ns-2 simulation glue to tie ns-2 objects to real-world interface, support, and GUI/control entities; and versions to completely simulate environment (where appropriate) • Implement ns-2 simulation framework to evaluate sensor variations, placements, deployments, and heterogeneous node architectures in repeatable real-world scenarios. • Implement hardware-in-loop mechanisms to evaluate physical object performance with simulated objects; and compare simulation fidelity. • Implement human-in-loop mechanisms to exercise all facets of SRSS object functionality. • Implement SAF-in-loop mechanisms to exercise SRSS scenarios in ModSAF simulations.

  13. Third Year SRSS Continued • Develop visualization tools for SRSS object activities and interactions tied to simulation exercises. • Augment visualization tools for SRSS to provide support as standalone Command and Control applications in simulated and actual environments. Deliverables: *      Interoperability of numerous simulation, virtual, and real realms of systems and objects *      Tools to observe, manage, and control SRSS sensor objects in both real and simulated environments.

More Related